Analytical Solution for Longitudinal Seismic Responses of Circular Tunnel Crossing Fault Zone

IF 3.4 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL International Journal for Numerical and Analytical Methods in Geomechanics Pub Date : 2024-09-17 DOI:10.1002/nag.3841
Jie Tang, Manchao He, Hanbing Bian, Yafei Qiao
{"title":"Analytical Solution for Longitudinal Seismic Responses of Circular Tunnel Crossing Fault Zone","authors":"Jie Tang,&nbsp;Manchao He,&nbsp;Hanbing Bian,&nbsp;Yafei Qiao","doi":"10.1002/nag.3841","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper proposes a simplified analytical solution for longitudinal seismic responses of a circular tunnel crossing a fault zone under longitudinally propagating shear waves. The transmissions and reflections of shear waves at two geological interfaces between the fault zone and intact rock are considered when calculating the free-field displacement. An improved elastic foundation beam model considering different tangential contact conditions at the tunnel‒rock interface is also adopted. According to the continuous conditions at the two geological interfaces, explicit expressions for the tunnel displacement, bending moment, and shearing force are given. The effectiveness of the proposed analytical solution is validated via numerical simulations, and the importance of accounting for tangential contact conditions at the tunnel‒rock interface is emphasized. Moreover, parametric studies are performed to investigate the effects of the fault zone width, rock conditions, tunnel lining stiffness, tangential contact conditions, and earthquake frequency on the deformation and internal forces of tunnels subjected to seismic waves. This novel analytical solution can be utilized to quickly estimate the longitudinal seismic responses of circular tunnels crossing fault zones subjected to longitudinally propagating shear waves, particularly in the preliminary engineering design, and can be extended to geological conditions with multiple interfaces.</p>\n </div>","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"48 17","pages":"4154-4177"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nag.3841","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a simplified analytical solution for longitudinal seismic responses of a circular tunnel crossing a fault zone under longitudinally propagating shear waves. The transmissions and reflections of shear waves at two geological interfaces between the fault zone and intact rock are considered when calculating the free-field displacement. An improved elastic foundation beam model considering different tangential contact conditions at the tunnel‒rock interface is also adopted. According to the continuous conditions at the two geological interfaces, explicit expressions for the tunnel displacement, bending moment, and shearing force are given. The effectiveness of the proposed analytical solution is validated via numerical simulations, and the importance of accounting for tangential contact conditions at the tunnel‒rock interface is emphasized. Moreover, parametric studies are performed to investigate the effects of the fault zone width, rock conditions, tunnel lining stiffness, tangential contact conditions, and earthquake frequency on the deformation and internal forces of tunnels subjected to seismic waves. This novel analytical solution can be utilized to quickly estimate the longitudinal seismic responses of circular tunnels crossing fault zones subjected to longitudinally propagating shear waves, particularly in the preliminary engineering design, and can be extended to geological conditions with multiple interfaces.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
穿越断层带的圆形隧道纵向地震响应的解析解
本文提出了在纵向传播的剪切波作用下,穿越断层带的圆形隧道纵向地震反应的简化分析方案。在计算自由场位移时,考虑了剪切波在断层带和完整岩石之间两个地质界面的传递和反射。此外,还采用了一种改进的弹性地基梁模型,考虑了隧道与岩石界面的不同切向接触条件。根据两个地质界面的连续条件,给出了隧道位移、弯矩和剪力的明确表达式。通过数值模拟验证了所提分析方案的有效性,并强调了考虑隧道与岩石界面切向接触条件的重要性。此外,还进行了参数研究,以探讨断层带宽度、岩石条件、隧道衬砌刚度、切向接触条件和地震频率对地震波作用下隧道变形和内力的影响。这种新颖的分析方案可用于快速估算穿越断层带的圆形隧道在纵向传播剪切波作用下的纵向地震响应,特别是在初步工程设计中,并可扩展到具有多个界面的地质条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
12.50%
发文量
160
审稿时长
9 months
期刊介绍: The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.
期刊最新文献
Theoretical Investigation of Dynamic Pile–Soil Interaction in Torsion Considering Continuity of Heterogeneous Soil MS‐IS Hypoplastic Model Considering Stiffness Degradation Under Cyclic Loading Conditions Adaptive Mesh Refinement Based on Finite Analytical Method for Two‐Dimensional Flow in Heterogeneous Porous Media Analytical Solution for the Topographic Effect of an Offshore Circular‐Arc Canyon Under P‐Wave Incidence A SPH Model Bridging Solid‐ and Fluid‐Like Behaviour in Granular Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1