Adapting Few-Shot Classification via In-Process Defense

Xi Yang;Dechen Kong;Ren Lin;Nannan Wang;Xinbo Gao
{"title":"Adapting Few-Shot Classification via In-Process Defense","authors":"Xi Yang;Dechen Kong;Ren Lin;Nannan Wang;Xinbo Gao","doi":"10.1109/TIP.2024.3458858","DOIUrl":null,"url":null,"abstract":"Most few-shot learning methods employ either adaptive approaches or parameter amortization techniques. However, their reliance on pre-trained models presents a significant vulnerability. When an attacker’s trigger activates a hidden backdoor, it may result in the misclassification of images, profoundly affecting the model’s performance. In our research, we explore adaptive defenses against backdoor attacks for few-shot learning. We introduce a specialized stochastic process tailored to task characteristics that safeguards the classification model against attack-induced incorrect feature extraction. This process functions during forward propagation and is thus termed an “in-process defense.” Our method employs an adaptive strategy, effectively generating task-level representations, enabling rapid adaptation to pre-trained models, and proving effective in few-shot classification scenarios for countering backdoor attacks. We apply latent stochastic processes to approximate task distributions and derive task-level representations from the support set. This task-level representation guides feature extraction, leading to backdoor trigger mismatching and forming the foundation of our parameter defense strategy. Benchmark tests on Meta-Dataset reveal that our approach not only withstands backdoor attacks but also shows an improved adaptation in addressing few-shot classification tasks.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"5232-5245"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10682488/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most few-shot learning methods employ either adaptive approaches or parameter amortization techniques. However, their reliance on pre-trained models presents a significant vulnerability. When an attacker’s trigger activates a hidden backdoor, it may result in the misclassification of images, profoundly affecting the model’s performance. In our research, we explore adaptive defenses against backdoor attacks for few-shot learning. We introduce a specialized stochastic process tailored to task characteristics that safeguards the classification model against attack-induced incorrect feature extraction. This process functions during forward propagation and is thus termed an “in-process defense.” Our method employs an adaptive strategy, effectively generating task-level representations, enabling rapid adaptation to pre-trained models, and proving effective in few-shot classification scenarios for countering backdoor attacks. We apply latent stochastic processes to approximate task distributions and derive task-level representations from the support set. This task-level representation guides feature extraction, leading to backdoor trigger mismatching and forming the foundation of our parameter defense strategy. Benchmark tests on Meta-Dataset reveal that our approach not only withstands backdoor attacks but also shows an improved adaptation in addressing few-shot classification tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过过程中的防御来调整 "少量 "分类
大多数少量学习方法都采用自适应方法或参数摊销技术。然而,这些方法对预训练模型的依赖带来了一个重大漏洞。当攻击者触发激活隐藏的后门时,可能会导致图像分类错误,从而严重影响模型的性能。在我们的研究中,我们探索了针对少数几次学习的后门攻击的自适应防御。我们根据任务特点引入了一个专门的随机过程,以保护分类模型免受攻击引起的错误特征提取。该过程在前向传播过程中发挥作用,因此被称为 "进程内防御"。我们的方法采用自适应策略,能有效生成任务级表征,实现对预训练模型的快速适应,并在少量分类场景中有效对抗后门攻击。我们应用潜在随机过程来近似任务分布,并从支持集中得出任务级表征。这种任务级表示法可指导特征提取,导致后门触发器不匹配,并构成我们参数防御策略的基础。在元数据集上进行的基准测试表明,我们的方法不仅能抵御后门攻击,还能在处理少量分类任务时显示出更好的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced Multispectral Band-to-Band Registration Using Co-Occurrence Scale Space and Spatial Confined RANSAC Guided Segmented Affine Transformation Pro2Diff: Proposal Propagation for Multi-Object Tracking via the Diffusion Model SegHSI: Semantic Segmentation of Hyperspectral Images With Limited Labeled Pixels PVPUFormer: Probabilistic Visual Prompt Unified Transformer for Interactive Image Segmentation Noisy-Aware Unsupervised Domain Adaptation for Scene Text Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1