{"title":"Enhanced Multispectral Band-to-Band Registration Using Co-Occurrence Scale Space and Spatial Confined RANSAC Guided Segmented Affine Transformation","authors":"Indranil Misra;Mukesh Kumar Rohil;S. Manthira Moorthi;Debajyoti Dhar","doi":"10.1109/TIP.2024.3494555","DOIUrl":null,"url":null,"abstract":"Band-to-Band Registration (BBR) is a pre-requisite image processing operation essential for specific remote sensing multispectral sensors. BBR aims to align spectral wavelength channels at sub-pixel level accuracy over each other. The paper presents a novel BBR technique utilizing Co-occurrence Scale Space (CSS) for feature point detection and Spatial Confined RANSAC (SC-RANSAC) for removing outlier matched control points. Additionally, the Segmented Affine Transformation (SAT) model reduces distortion and ensures consistent BBR. The methodology developed is evaluated with Nano-MX multispectral images onboard the Indian Nano Satellite (INS-2B) covering diverse landscapes. BBR performance using the proposed method is also verified visually at a 4X zoom level on satellite scenes dominated by cloud pixels. The band misregistration effect on the Normalized Difference Vegetation Index (NDVI) from INS-2B is analyzed and cross-validated with the closest acquisition Landsat-9 OLI NDVI map before and after BBR correction. The experimental evaluation shows that the proposed BBR approach outperforms the state-of-the-art image registration techniques.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"6521-6534"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10753448/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Band-to-Band Registration (BBR) is a pre-requisite image processing operation essential for specific remote sensing multispectral sensors. BBR aims to align spectral wavelength channels at sub-pixel level accuracy over each other. The paper presents a novel BBR technique utilizing Co-occurrence Scale Space (CSS) for feature point detection and Spatial Confined RANSAC (SC-RANSAC) for removing outlier matched control points. Additionally, the Segmented Affine Transformation (SAT) model reduces distortion and ensures consistent BBR. The methodology developed is evaluated with Nano-MX multispectral images onboard the Indian Nano Satellite (INS-2B) covering diverse landscapes. BBR performance using the proposed method is also verified visually at a 4X zoom level on satellite scenes dominated by cloud pixels. The band misregistration effect on the Normalized Difference Vegetation Index (NDVI) from INS-2B is analyzed and cross-validated with the closest acquisition Landsat-9 OLI NDVI map before and after BBR correction. The experimental evaluation shows that the proposed BBR approach outperforms the state-of-the-art image registration techniques.