Enhanced Multispectral Band-to-Band Registration Using Co-Occurrence Scale Space and Spatial Confined RANSAC Guided Segmented Affine Transformation

Indranil Misra;Mukesh Kumar Rohil;S. Manthira Moorthi;Debajyoti Dhar
{"title":"Enhanced Multispectral Band-to-Band Registration Using Co-Occurrence Scale Space and Spatial Confined RANSAC Guided Segmented Affine Transformation","authors":"Indranil Misra;Mukesh Kumar Rohil;S. Manthira Moorthi;Debajyoti Dhar","doi":"10.1109/TIP.2024.3494555","DOIUrl":null,"url":null,"abstract":"Band-to-Band Registration (BBR) is a pre-requisite image processing operation essential for specific remote sensing multispectral sensors. BBR aims to align spectral wavelength channels at sub-pixel level accuracy over each other. The paper presents a novel BBR technique utilizing Co-occurrence Scale Space (CSS) for feature point detection and Spatial Confined RANSAC (SC-RANSAC) for removing outlier matched control points. Additionally, the Segmented Affine Transformation (SAT) model reduces distortion and ensures consistent BBR. The methodology developed is evaluated with Nano-MX multispectral images onboard the Indian Nano Satellite (INS-2B) covering diverse landscapes. BBR performance using the proposed method is also verified visually at a 4X zoom level on satellite scenes dominated by cloud pixels. The band misregistration effect on the Normalized Difference Vegetation Index (NDVI) from INS-2B is analyzed and cross-validated with the closest acquisition Landsat-9 OLI NDVI map before and after BBR correction. The experimental evaluation shows that the proposed BBR approach outperforms the state-of-the-art image registration techniques.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"6521-6534"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10753448/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Band-to-Band Registration (BBR) is a pre-requisite image processing operation essential for specific remote sensing multispectral sensors. BBR aims to align spectral wavelength channels at sub-pixel level accuracy over each other. The paper presents a novel BBR technique utilizing Co-occurrence Scale Space (CSS) for feature point detection and Spatial Confined RANSAC (SC-RANSAC) for removing outlier matched control points. Additionally, the Segmented Affine Transformation (SAT) model reduces distortion and ensures consistent BBR. The methodology developed is evaluated with Nano-MX multispectral images onboard the Indian Nano Satellite (INS-2B) covering diverse landscapes. BBR performance using the proposed method is also verified visually at a 4X zoom level on satellite scenes dominated by cloud pixels. The band misregistration effect on the Normalized Difference Vegetation Index (NDVI) from INS-2B is analyzed and cross-validated with the closest acquisition Landsat-9 OLI NDVI map before and after BBR correction. The experimental evaluation shows that the proposed BBR approach outperforms the state-of-the-art image registration techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用共现尺度空间和空间限制 RANSAC 引导的分段仿射变换增强多光谱波段到波段的配准
波段到波段配准(BBR)是特定遥感多光谱传感器必不可少的一项先决图像处理操作。波段对波段配准的目的是以亚像素级的精度将光谱波长通道相互配准。本文提出了一种新颖的 BBR 技术,利用共生尺度空间(CSS)进行特征点检测,并利用空间限制 RANSAC(SC-RANSAC)去除离群匹配控制点。此外,分段仿射变换 (SAT) 模型可减少失真并确保 BBR 的一致性。利用印度纳卫星(INS-2B)上的 Nano-MX 多光谱图像对所开发的方法进行了评估,这些图像覆盖了不同的地貌。在以云像素为主的卫星场景上,使用所提出方法的 BBR 性能也在 4 倍缩放级别上得到了直观验证。分析了波段错误注册对 INS-2B 归一化植被指数(NDVI)的影响,并与 BBR 校正前后最接近的 Landsat-9 OLI NDVI 地图进行了交叉验证。实验评估表明,所提出的 BBR 方法优于最先进的图像配准技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Text-Video Retrieval Performance With Low-Salient but Discriminative Objects Breaking Boundaries: Unifying Imaging and Compression for HDR Image Compression A Pyramid Fusion MLP for Dense Prediction IFENet: Interaction, Fusion, and Enhancement Network for V-D-T Salient Object Detection NeuralDiffuser: Neuroscience-Inspired Diffusion Guidance for fMRI Visual Reconstruction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1