{"title":"Magnesium niobate as a high-κ gate dielectric for two-dimensional electronics","authors":"Cheng-Yi Zhu, Meng-Ru Zhang, Qing Chen, Lin-Qing Yue, Rong Song, Cong Wang, Hui-Zhen Li, Feichi Zhou, Yang Li, Weiwei Zhao, Liang Zhen, Mengwei Si, Jia Li, Jingli Wang, Yang Chai, Cheng-Yan Xu, Jing-Kai Qin","doi":"10.1038/s41928-024-01245-6","DOIUrl":null,"url":null,"abstract":"<p>Integrated circuits based on two-dimensional semiconductors require ultrathin gate insulators that can provide high interface quality and dielectric reliability, minimized electrically active traps and efficient gate controllability. However, existing two-dimensional insulators do not provide a good trade-off in terms of bandgap, breakdown strength, dielectric constant, leakage current and bias temperature stability. Here, we show that single crystals of magnesium niobate (MgNb<sub>2</sub>O<sub>6</sub>) can be obtained through a buffer-controlled epitaxial growth process on a mica substrate. The atomically thin MgNb<sub>2</sub>O<sub>6</sub> crystals have a wide bandgap (around 5.0 eV), high dielectric constant (around 20), large breakdown voltage (around 16 MV cm<sup>−1</sup>) and good thermal reliability. The MgNb<sub>2</sub>O<sub>6</sub> can form a van der Waals interface with monolayer molybdenum disulfide (MoS<sub>2</sub>) with an extremely low density of trap states. MoS<sub>2</sub> field-effect transistors with MgNb<sub>2</sub>O<sub>6</sub> gate dielectrics exhibit a hysteresis under 0.9 mV (MV cm<sup>−</sup><sup>1</sup>)<sup>−</sup><sup>1</sup>, a subthreshold swing of 62 mV dec<sup>−1</sup>, an on/off current ratio of up to 4 × 10<sup>7</sup> and high electrical reliability at 500 K. The excellent electrostatic controllability of MgNb<sub>2</sub>O<sub>6</sub> allowed us to create graphene-contacted transistors and inverter circuits with a channel length of 50 nm.</p>","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"13 1","pages":""},"PeriodicalIF":33.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41928-024-01245-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Integrated circuits based on two-dimensional semiconductors require ultrathin gate insulators that can provide high interface quality and dielectric reliability, minimized electrically active traps and efficient gate controllability. However, existing two-dimensional insulators do not provide a good trade-off in terms of bandgap, breakdown strength, dielectric constant, leakage current and bias temperature stability. Here, we show that single crystals of magnesium niobate (MgNb2O6) can be obtained through a buffer-controlled epitaxial growth process on a mica substrate. The atomically thin MgNb2O6 crystals have a wide bandgap (around 5.0 eV), high dielectric constant (around 20), large breakdown voltage (around 16 MV cm−1) and good thermal reliability. The MgNb2O6 can form a van der Waals interface with monolayer molybdenum disulfide (MoS2) with an extremely low density of trap states. MoS2 field-effect transistors with MgNb2O6 gate dielectrics exhibit a hysteresis under 0.9 mV (MV cm−1)−1, a subthreshold swing of 62 mV dec−1, an on/off current ratio of up to 4 × 107 and high electrical reliability at 500 K. The excellent electrostatic controllability of MgNb2O6 allowed us to create graphene-contacted transistors and inverter circuits with a channel length of 50 nm.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.