Effect of mowing timing and clipping collection practices on azoxystrobin distribution, persistence, and efficacy

IF 2 3区 农林科学 Q2 AGRONOMY Crop Science Pub Date : 2024-09-18 DOI:10.1002/csc2.21365
Daniel R. Freund, James P. Kerns, E. Lee Butler, Khalied A. Ahmed, Travis W. Gannon
{"title":"Effect of mowing timing and clipping collection practices on azoxystrobin distribution, persistence, and efficacy","authors":"Daniel R. Freund, James P. Kerns, E. Lee Butler, Khalied A. Ahmed, Travis W. Gannon","doi":"10.1002/csc2.21365","DOIUrl":null,"url":null,"abstract":"Previous research suggests mowing practices following azoxystrobin application alter pest control and residue fate. Azoxystrobin, an acropetal penetrant quinone outside inhibitor fungicide, is commonly applied in turfgrass and other agricultural settings, protecting desired plants from fungal pathogens by inhibiting fungal growth. Field research was initiated in Raleigh, NC, and repeated in time to assess the effect of post-application mowing timing and clipping collection practices on azoxystrobin residue persistence in tall fescue (<i>Schedonorus arundinaceus</i> Schreb.). At trial initiation, azoxystrobin was applied at the maximum single application rate (0.61 kg ai ha<sup>−1</sup>) to tall fescue plots. To determine the effect of initial mowing timing, plots were mowed (9.5 cm) at 0, 1, 2, 3, 7, or 14 days after application (DAA). To determine the effect of clipping removal, plots were mowed at 3, 10, and 17 DAA and clippings were either returned to the canopy or bagged and removed. Concurrently, soil cores (92 cm<sup>2</sup>) were collected at 3, 7, 14, and 21 DAA and then segmented into remaining aboveground vegetation and soil (0.0- to 2.5-cm depth) for residue analyses. Mowing timing affected azoxystrobin residue in the vegetation and in soil. When clippings were returned to the canopy, 5% more azoxystrobin was detected in the vegetation at 7 and 14 DAA. At 3 and 7 DAA, in the soil, returning clippings resulted in &gt;3% more of the applied azoxystrobin compared to removing clippings. Data from this research may allow for extended fungicide intervals for brown patch suppression and demonstrate the importance of returning clipping to turf systems to retain azoxystrobin residues.","PeriodicalId":10849,"journal":{"name":"Crop Science","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/csc2.21365","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Previous research suggests mowing practices following azoxystrobin application alter pest control and residue fate. Azoxystrobin, an acropetal penetrant quinone outside inhibitor fungicide, is commonly applied in turfgrass and other agricultural settings, protecting desired plants from fungal pathogens by inhibiting fungal growth. Field research was initiated in Raleigh, NC, and repeated in time to assess the effect of post-application mowing timing and clipping collection practices on azoxystrobin residue persistence in tall fescue (Schedonorus arundinaceus Schreb.). At trial initiation, azoxystrobin was applied at the maximum single application rate (0.61 kg ai ha−1) to tall fescue plots. To determine the effect of initial mowing timing, plots were mowed (9.5 cm) at 0, 1, 2, 3, 7, or 14 days after application (DAA). To determine the effect of clipping removal, plots were mowed at 3, 10, and 17 DAA and clippings were either returned to the canopy or bagged and removed. Concurrently, soil cores (92 cm2) were collected at 3, 7, 14, and 21 DAA and then segmented into remaining aboveground vegetation and soil (0.0- to 2.5-cm depth) for residue analyses. Mowing timing affected azoxystrobin residue in the vegetation and in soil. When clippings were returned to the canopy, 5% more azoxystrobin was detected in the vegetation at 7 and 14 DAA. At 3 and 7 DAA, in the soil, returning clippings resulted in >3% more of the applied azoxystrobin compared to removing clippings. Data from this research may allow for extended fungicide intervals for brown patch suppression and demonstrate the importance of returning clipping to turf systems to retain azoxystrobin residues.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
除草时间和剪枝收集方法对唑菌酰胺分布、持久性和药效的影响
以前的研究表明,施用唑啉草酯后的除草方法会改变害虫控制和残留物的去向。唑啉草酯是一种丙酮渗透醌外抑制剂杀真菌剂,通常用于草坪和其他农业环境,通过抑制真菌生长来保护所需植物免受真菌病原体的侵害。在北卡罗来纳州罗利市启动了一项田间研究,并及时重复了这项研究,以评估施用唑啉草酯后的割草时间和剪草收集方法对高羊茅(Schedonorus arundinaceus Schreb.)中唑啉草酯残留持久性的影响。试验开始时,唑啉草酯以最大单次施用量(0.61 kg ai ha-1)施用于高羊茅地块。为了确定初始除草时间的影响,在施药后 0、1、2、3、7 或 14 天(DAA)对地块进行除草(9.5 厘米)。为了确定剪枝去除的效果,在施药后 3、10 和 17 天分别对地块进行除草,然后将剪枝放回树冠层或装袋去除。同时,在 3、7、14 和 21 DAA 时采集土芯(92 平方厘米),然后将其分为剩余的地上植被和土壤(0.0 至 2.5 厘米深),用于残留物分析。除草时间会影响植被和土壤中的唑啉草酯残留量。当剪下的植被被送回树冠层时,在 7 和 14 DAA 的植被中检测到的唑啉草酯含量增加了 5%。在 3 天后和 7 天后的土壤中,与移除剪下的植株相比,移除剪下的植株中多了 3% 的唑啉草酯。这项研究的数据可以延长抑制褐斑病的杀菌剂间隔期,并证明了将剪下的草皮送回草坪系统以保留唑啉草酯残留的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Crop Science
Crop Science 农林科学-农艺学
CiteScore
4.50
自引率
8.70%
发文量
197
审稿时长
3 months
期刊介绍: Articles in Crop Science are of interest to researchers, policy makers, educators, and practitioners. The scope of articles in Crop Science includes crop breeding and genetics; crop physiology and metabolism; crop ecology, production, and management; seed physiology, production, and technology; turfgrass science; forage and grazing land ecology and management; genomics, molecular genetics, and biotechnology; germplasm collections and their use; and biomedical, health beneficial, and nutritionally enhanced plants. Crop Science publishes thematic collections of articles across its scope and includes topical Review and Interpretation, and Perspectives articles.
期刊最新文献
Assessment of genetic diversity and heterotic alignment of CIMMYT and IITA maize inbred lines adapted to sub‐Saharan Africa Optimizing liquid‐applied iron sulfate rate and application interval for dollar spot suppression on golf course fairways Soybean water‐use efficiency increased over 80 years of breeding Investigating multi‐trophic effects of St. Augustinegrass cultivar blends in the Southeastern United States Genetic variation and population structure of the rice accessions maintained in the AfricaRice genebank using DArTseq
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1