Li Luo , Tong Yang , Mawuli Dzakpasu , Xu Jiang , Wenshan Guo , Huu Hao Ngo , Xiaochang C. Wang
{"title":"Interplay of humic acid and Cr(VI) on green microalgae: Metabolic responses and chromium enrichment","authors":"Li Luo , Tong Yang , Mawuli Dzakpasu , Xu Jiang , Wenshan Guo , Huu Hao Ngo , Xiaochang C. Wang","doi":"10.1016/j.jhazmat.2024.135885","DOIUrl":null,"url":null,"abstract":"<div><p>Dissolved organic matter (DOM) present in aquatic environments can significantly influence microalgal metabolism and the enrichment of heavy metals. However, the specific mechanism through which typical DOM affects the enrichment of the heavy metal chromium (Cr) in green algae remains unclear. This study investigates the impacts of varying concentrations of humic acid (HA), selected as a representative DOM in water, on the growth, metabolism, and Cr enrichment in <em>Chlorella vulgaris,</em> a typical green alga. The results indicated that low concentrations of HA were capable of enhancing Cr enrichment in <em>C. vulgaris</em>, with the highest Cr enrichment rate recorded at 41.50 % at TOC = 10 mg/L. The enrichment of Cr in algal cells primarily occurred through cell proliferation and complexation reduction of extracellular polymeric substances (EPS). In the presence of HA, <em>C. vulgaris</em> predominantly removed Cr through extracellular adsorption, accounting for 79.76–85.88 % of the total Cr removal. Furthermore, carboxyl complexation and hydroxyl reduction within EPS facilitated both the enrichment of Cr (18.72–21.49 %) and the reduction of Cr(VI) (63.93–74.10 %). These findings provide valuable insights into strategies for mitigating heavy metal pollution and managing associated risks in aquatic environments.</p></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"480 ","pages":"Article 135885"},"PeriodicalIF":12.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389424024646","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Dissolved organic matter (DOM) present in aquatic environments can significantly influence microalgal metabolism and the enrichment of heavy metals. However, the specific mechanism through which typical DOM affects the enrichment of the heavy metal chromium (Cr) in green algae remains unclear. This study investigates the impacts of varying concentrations of humic acid (HA), selected as a representative DOM in water, on the growth, metabolism, and Cr enrichment in Chlorella vulgaris, a typical green alga. The results indicated that low concentrations of HA were capable of enhancing Cr enrichment in C. vulgaris, with the highest Cr enrichment rate recorded at 41.50 % at TOC = 10 mg/L. The enrichment of Cr in algal cells primarily occurred through cell proliferation and complexation reduction of extracellular polymeric substances (EPS). In the presence of HA, C. vulgaris predominantly removed Cr through extracellular adsorption, accounting for 79.76–85.88 % of the total Cr removal. Furthermore, carboxyl complexation and hydroxyl reduction within EPS facilitated both the enrichment of Cr (18.72–21.49 %) and the reduction of Cr(VI) (63.93–74.10 %). These findings provide valuable insights into strategies for mitigating heavy metal pollution and managing associated risks in aquatic environments.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.