Toward Enhanced Biomimetic Artificial Visual Systems Based on Organic Heterojunction Optoelectronic Synaptic Transistors

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2024-09-17 DOI:10.1002/aelm.202400632
Haonan Wang, Wandi Chen, Wenjuan Su, Zhenyou Zou, Shuchen Weng, Xiongtu Zhou, Chaoxing Wu, Tailiang Guo, Yongai Zhang
{"title":"Toward Enhanced Biomimetic Artificial Visual Systems Based on Organic Heterojunction Optoelectronic Synaptic Transistors","authors":"Haonan Wang, Wandi Chen, Wenjuan Su, Zhenyou Zou, Shuchen Weng, Xiongtu Zhou, Chaoxing Wu, Tailiang Guo, Yongai Zhang","doi":"10.1002/aelm.202400632","DOIUrl":null,"url":null,"abstract":"Artificial visual systems, inspired by the human eye, hold significant potential in artificial intelligence. Optoelectronic synapses, integrating image perception, processing, and memory in a single device, offer promising solutions. The human eye exhibits different recognition accuracies for objects under varying light conditions. Therefore, a more biomimetic visual system is needed to better fit actual application scenarios. Here, an organic heterojunction-based optoelectronic synaptic transistor (OHOST) is proposed to enhance biomimetic artificial visual systems. By utilizing the excellent carrier capture ability of core-multi-shell quantum dots (QDs) and the high exciton dissociation efficiency of heterojunction interfaces, the device achieves a recognition capability under different light intensities closely resembling that of the human eye. Under optimal light intensity, the recognition accuracy for the modified national institute of standards and technology (MNIST) dataset can reach 91.52%. Nevertheless, under both low and high light intensities, the accuracy drops to a low level. This work pushes the development of artificial visual systems toward higher levels of biomimicry.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"46 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400632","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial visual systems, inspired by the human eye, hold significant potential in artificial intelligence. Optoelectronic synapses, integrating image perception, processing, and memory in a single device, offer promising solutions. The human eye exhibits different recognition accuracies for objects under varying light conditions. Therefore, a more biomimetic visual system is needed to better fit actual application scenarios. Here, an organic heterojunction-based optoelectronic synaptic transistor (OHOST) is proposed to enhance biomimetic artificial visual systems. By utilizing the excellent carrier capture ability of core-multi-shell quantum dots (QDs) and the high exciton dissociation efficiency of heterojunction interfaces, the device achieves a recognition capability under different light intensities closely resembling that of the human eye. Under optimal light intensity, the recognition accuracy for the modified national institute of standards and technology (MNIST) dataset can reach 91.52%. Nevertheless, under both low and high light intensities, the accuracy drops to a low level. This work pushes the development of artificial visual systems toward higher levels of biomimicry.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于有机异质结光电突触晶体管的增强型仿生人工视觉系统
受人眼启发的人工视觉系统在人工智能领域具有巨大潜力。光电突触将图像感知、处理和记忆集成在一个设备中,提供了前景广阔的解决方案。在不同的光照条件下,人眼对物体的识别准确率各不相同。因此,需要一种更仿生的视觉系统,以更好地适应实际应用场景。本文提出了一种基于有机异质结的光电突触晶体管(OHOST),以增强仿生人工视觉系统。该器件利用核心多壳量子点(QDs)出色的载流子捕获能力和异质结界面的高激子解离效率,在不同光强度下实现了与人眼近似的识别能力。在最佳光照强度下,美国国家标准与技术研究院(MNIST)数据集的识别准确率可达 91.52%。然而,在低光照强度和高光照强度下,准确率都会下降到较低水平。这项工作将人工视觉系统的发展推向了更高的仿生水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
Physical Reservoir Computing Utilizing Ion-Gating Transistors Operating in Electric Double Layer and Redox Mechanisms Single-Cell Membrane Potential Stimulation and Recording by an Electrolyte-Gated Organic Field-Effect Transistor 2D α-In2Se3 Flakes for High Frequency Tunable and Switchable Film Bulk Acoustic Wave Resonators Aqueous Ammonia Sensor with Neuromorphic Detection 3D Nano Hafnium-Based Ferroelectric Memory Vertical Array for High-Density and High-Reliability Logic-In-Memory Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1