Achieving Significantly Boosted Dielectric Energy Density of Polymer Film via Introducing a Bumpy Gold/Polymethylsilsesquioxane Granular Blocking Layer

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-09-18 DOI:10.1002/smll.202407299
Zelong Chang, Zhicheng Shi, Yao Liu, Li Lei, Liang Sun, Qingyang Tang, Runhua Fan, Hongzhi Cui, Hong Wang
{"title":"Achieving Significantly Boosted Dielectric Energy Density of Polymer Film via Introducing a Bumpy Gold/Polymethylsilsesquioxane Granular Blocking Layer","authors":"Zelong Chang, Zhicheng Shi, Yao Liu, Li Lei, Liang Sun, Qingyang Tang, Runhua Fan, Hongzhi Cui, Hong Wang","doi":"10.1002/smll.202407299","DOIUrl":null,"url":null,"abstract":"Polymer dielectrics are the key materials for pulsed energy storage systems, but their low energy densities greatly restrict the applications in integrated electronic devices. Herein, a unique bumpy granular interlayer consisting of gold nanoparticles (Au NPs) and polymethyksesquioxane (PMSQ) microspheres is introduced into a poly(vinylidene fluoride) (PVDF) film, forming trilayered PVDF-Au/PMSQ-PVDF films. Interestingly, the Au/PMSQ interlayer arouses a dielectric enhancement of 47% and an ultrahigh breakdown strength of 704 MV m<sup>−1</sup>, which reaches 153% of pure PVDF. It is revealed that the greatly enhanced breakdown strength originated from the Coulomb-blockade effect of Au NPs and the excellent insulating properties of PMSQ microspheres with a special molecular-scale organic–inorganic hybrid structure. Benefiting from the concurrently enhanced dielectric and breakdown performances, an outstanding energy density of 22.42 J cm<sup>−3</sup> with an efficiency of 67.1%, which reaches 249% of that of the pure PVDF, is achieved. It is further confirmed that this design strategy is also applicable to linear dielectric polymer polyethyleneimine. The composites exhibit an energy density of 8.91 J cm<sup>−3</sup> with a high efficiency of ≈95%. This work offers a novel and efficient strategy for concurrently enhancing the dielectric and breakdown performances of polymers toward pulsed power applications.","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407299","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer dielectrics are the key materials for pulsed energy storage systems, but their low energy densities greatly restrict the applications in integrated electronic devices. Herein, a unique bumpy granular interlayer consisting of gold nanoparticles (Au NPs) and polymethyksesquioxane (PMSQ) microspheres is introduced into a poly(vinylidene fluoride) (PVDF) film, forming trilayered PVDF-Au/PMSQ-PVDF films. Interestingly, the Au/PMSQ interlayer arouses a dielectric enhancement of 47% and an ultrahigh breakdown strength of 704 MV m−1, which reaches 153% of pure PVDF. It is revealed that the greatly enhanced breakdown strength originated from the Coulomb-blockade effect of Au NPs and the excellent insulating properties of PMSQ microspheres with a special molecular-scale organic–inorganic hybrid structure. Benefiting from the concurrently enhanced dielectric and breakdown performances, an outstanding energy density of 22.42 J cm−3 with an efficiency of 67.1%, which reaches 249% of that of the pure PVDF, is achieved. It is further confirmed that this design strategy is also applicable to linear dielectric polymer polyethyleneimine. The composites exhibit an energy density of 8.91 J cm−3 with a high efficiency of ≈95%. This work offers a novel and efficient strategy for concurrently enhancing the dielectric and breakdown performances of polymers toward pulsed power applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过引入凹凸不平的金/聚甲基硅倍半氧烷颗粒阻挡层显著提高聚合物薄膜的介电能量密度
聚合物电介质是脉冲储能系统的关键材料,但其低能量密度极大地限制了其在集成电子设备中的应用。在这里,一种由金纳米粒子(Au NPs)和聚甲基癸氧烷(PMSQ)微球组成的独特凹凸颗粒夹层被引入聚偏二氟乙烯(PVDF)薄膜,形成三层 PVDF-Au/PMSQ-PVDF 薄膜。有趣的是,金/PMSQ 中间层的介电强度提高了 47%,击穿强度达到 704 MV m-1,是纯 PVDF 的 153%。研究表明,击穿强度的大幅提高源于金纳米粒子的库仑阻断效应和具有特殊分子尺度有机-无机杂化结构的 PMSQ 微球的优异绝缘性能。得益于介电性能和击穿性能的同时增强,该材料的能量密度达到了 22.42 J cm-3,效率高达 67.1%,是纯 PVDF 的 249%。研究进一步证实,这种设计策略也适用于线性介电聚合物聚乙烯亚胺。复合材料的能量密度为 8.91 J cm-3,效率高达 ≈95%。这项研究为同时增强聚合物的介电性能和击穿性能提供了一种新颖而有效的策略,可用于脉冲功率应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Site‐Selective Biofunctionalization of 3D Microstructures Via Direct Ink Writing Construction of “Metal Defect/Oxygen Defect Junction” in ZnFe2O4–NiCo2O4 Heterostructures for Enhancing Electrocatalytic Oxygen Evolution Devising Biocompatible, NIR-Activated Helical Pyroptosis Agents via 𝛑-Twisting Strategy for Promoting Antitumor Immunity Achieving Significantly Boosted Dielectric Energy Density of Polymer Film via Introducing a Bumpy Gold/Polymethylsilsesquioxane Granular Blocking Layer Modulating Silver Performance in Electrocatalytic Oxidation of HCHO via SMSI between Ag-Co3O4 Interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1