{"title":"Polymeric membrane electrode-based biosensor for detection of methadone: Enhancing doping control in athletes","authors":"","doi":"10.1016/j.aej.2024.09.028","DOIUrl":null,"url":null,"abstract":"<div><p>This work aimed to develop a simple, very stable, and sensitive biosensor to detect methadone for athlete doping monitoring by integrating polyaniline and graphitic carbon nitride on a glassy carbon electrode (PANI/g-C<sub>3</sub>N<sub>4</sub>/GCE). Using modified g-C<sub>3</sub>N<sub>4</sub>/GCE, the deposition approach was used to electrooxidize and polymerize aniline. The electrodeposited and polymerized aniline particles on g-C<sub>3</sub>N<sub>4</sub> surfaces were confirmed by the structural analysis results. The addition of g-C<sub>3</sub>N<sub>4</sub> to PANI produced a network film that improved stability and sensitivity and significantly increased electron mobility, according to cyclic-voltammetry and differential-pulse-voltammetry measurements. The DPV responses of PANI/g-C<sub>3</sub>N<sub>4</sub>/GCE indicated that this methadone sensor has sensitivity of 0.0891 μA/μM, linear-range of 1–520 μM, and detection limit of 4 nM. In this study, the proposed sensor's methadone detection capabilities were tested using prepared urine samples from four young athletes, ages 26–32. The sensor's accuracy and dependability are demonstrated by the significant recovery values (more than 97.00 %), suitable precision (RSD less than 4.69 %), and agreement between measurements made using the DPV and the methadone test kit. These findings demonstrate the developed sensor's potential to improve athletes' doping control by offering a dependable methadone detection technique.</p></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1110016824010421/pdfft?md5=f889f6e4aa9d72c84f0ccaba999ef401&pid=1-s2.0-S1110016824010421-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016824010421","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work aimed to develop a simple, very stable, and sensitive biosensor to detect methadone for athlete doping monitoring by integrating polyaniline and graphitic carbon nitride on a glassy carbon electrode (PANI/g-C3N4/GCE). Using modified g-C3N4/GCE, the deposition approach was used to electrooxidize and polymerize aniline. The electrodeposited and polymerized aniline particles on g-C3N4 surfaces were confirmed by the structural analysis results. The addition of g-C3N4 to PANI produced a network film that improved stability and sensitivity and significantly increased electron mobility, according to cyclic-voltammetry and differential-pulse-voltammetry measurements. The DPV responses of PANI/g-C3N4/GCE indicated that this methadone sensor has sensitivity of 0.0891 μA/μM, linear-range of 1–520 μM, and detection limit of 4 nM. In this study, the proposed sensor's methadone detection capabilities were tested using prepared urine samples from four young athletes, ages 26–32. The sensor's accuracy and dependability are demonstrated by the significant recovery values (more than 97.00 %), suitable precision (RSD less than 4.69 %), and agreement between measurements made using the DPV and the methadone test kit. These findings demonstrate the developed sensor's potential to improve athletes' doping control by offering a dependable methadone detection technique.
期刊介绍:
Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification:
• Mechanical, Production, Marine and Textile Engineering
• Electrical Engineering, Computer Science and Nuclear Engineering
• Civil and Architecture Engineering
• Chemical Engineering and Applied Sciences
• Environmental Engineering