Majid Ali , Umar Farooq , Xi-Ling Xu , Hong-Guang Xu , Wei-Jun Zheng
{"title":"Characterizing metal carbide structures: Insights from photoelectron spectroscopy and density functional theory","authors":"Majid Ali , Umar Farooq , Xi-Ling Xu , Hong-Guang Xu , Wei-Jun Zheng","doi":"10.1016/j.ccr.2024.216197","DOIUrl":null,"url":null,"abstract":"<div><p>Metal carbides are highly intriguing to researchers due to their diverse properties, including electrical, thermal, magnetic, and mechanical characteristics. They are prized for their high specific surface areas, exceptional biocompatibility, and versatile applications across various fields such as chemical synthesis, catalysis, mechanical components, coatings, electronics, and aerospace materials. Through techniques like photoelectron spectroscopy (PES) and density functional theory (DFT), scientists have extensively studied the geometries, microstructure, stability, charge distribution, electronic properties, and electromagnetic characteristics of metal carbide clusters. These studies have paved the way for the development of new metal−carbon materials at both atomic and macro scales, finding applications in industrial catalysis, high−temperature ceramics, electrode materials, supercapacitors, and even astrochemistry. This review delves into the compositions, methods for structure determination, bonding patterns, and geometric arrangements observed in a wide range of metal-carbide clusters. These clusters, composed of metal atoms bonded to carbon atoms in different ratios and configurations, have been thoroughly investigated to unravel their fundamental properties and potential applications. The goal of this review is to offer a comprehensive overview of our current understanding of the structural characteristics and chemical bonding within metal-carbide clusters, emphasizing their importance in materials science and catalysis. These insights are instrumental in designing novel nano−scale metal−carbide clusters that find utility in creating nanowires, nanotubes, and 2D sheets for various applications like photovoltaic cells, electrodes, batteries, catalysts, and electronic devices.</p></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"522 ","pages":"Article 216197"},"PeriodicalIF":20.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854524005435","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Metal carbides are highly intriguing to researchers due to their diverse properties, including electrical, thermal, magnetic, and mechanical characteristics. They are prized for their high specific surface areas, exceptional biocompatibility, and versatile applications across various fields such as chemical synthesis, catalysis, mechanical components, coatings, electronics, and aerospace materials. Through techniques like photoelectron spectroscopy (PES) and density functional theory (DFT), scientists have extensively studied the geometries, microstructure, stability, charge distribution, electronic properties, and electromagnetic characteristics of metal carbide clusters. These studies have paved the way for the development of new metal−carbon materials at both atomic and macro scales, finding applications in industrial catalysis, high−temperature ceramics, electrode materials, supercapacitors, and even astrochemistry. This review delves into the compositions, methods for structure determination, bonding patterns, and geometric arrangements observed in a wide range of metal-carbide clusters. These clusters, composed of metal atoms bonded to carbon atoms in different ratios and configurations, have been thoroughly investigated to unravel their fundamental properties and potential applications. The goal of this review is to offer a comprehensive overview of our current understanding of the structural characteristics and chemical bonding within metal-carbide clusters, emphasizing their importance in materials science and catalysis. These insights are instrumental in designing novel nano−scale metal−carbide clusters that find utility in creating nanowires, nanotubes, and 2D sheets for various applications like photovoltaic cells, electrodes, batteries, catalysts, and electronic devices.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.