Accelerated formation of M2C carbides by proton irradiation inhibits molten salt corrosion in Ni-based alloy

IF 6.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Research and Technology-Jmr&t Pub Date : 2024-09-17 DOI:10.1016/j.jmrt.2024.09.142
Weichi Ji , Zhenbo Zhu , Hefei Huang , Cheng Li , Guanhong Lei , Yan Li
{"title":"Accelerated formation of M2C carbides by proton irradiation inhibits molten salt corrosion in Ni-based alloy","authors":"Weichi Ji ,&nbsp;Zhenbo Zhu ,&nbsp;Hefei Huang ,&nbsp;Cheng Li ,&nbsp;Guanhong Lei ,&nbsp;Yan Li","doi":"10.1016/j.jmrt.2024.09.142","DOIUrl":null,"url":null,"abstract":"<div><p>The effect of displacement damage on the corrosion behavior in a molten FLiBe salt environment was investigated. The element distribution and microstructure around the grain boundaries (GBs) after corrosion were characterized. The results show a decrease in corrosion thickness with increasing irradiation dose and the presence of intergranular corrosion. Nanoscales M<sub>2</sub>C carbides were observed to be distributed, with a denser and thicker distribution in samples with higher irradiation doses. Their distribution depth is related to the Cr depletion region, inhibiting Cr diffusion toward the GBs and surface. Furthermore, the nucleation mechanism of M<sub>2</sub>C carbides along the GBs and in irradiated regions was revealed, attributed to the combined effects of thermal influences, element preferential dissolution due to corrosion, and irradiation-induced segregation.</p></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"33 ","pages":"Pages 742-748"},"PeriodicalIF":6.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2238785424021471/pdfft?md5=ebdf12c2114893d99e19280002298fa5&pid=1-s2.0-S2238785424021471-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785424021471","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of displacement damage on the corrosion behavior in a molten FLiBe salt environment was investigated. The element distribution and microstructure around the grain boundaries (GBs) after corrosion were characterized. The results show a decrease in corrosion thickness with increasing irradiation dose and the presence of intergranular corrosion. Nanoscales M2C carbides were observed to be distributed, with a denser and thicker distribution in samples with higher irradiation doses. Their distribution depth is related to the Cr depletion region, inhibiting Cr diffusion toward the GBs and surface. Furthermore, the nucleation mechanism of M2C carbides along the GBs and in irradiated regions was revealed, attributed to the combined effects of thermal influences, element preferential dissolution due to corrosion, and irradiation-induced segregation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
质子辐照加速形成的 M2C 碳化物可抑制镍基合金的熔盐腐蚀
研究了位移损伤对熔融 FLiBe 盐环境中腐蚀行为的影响。对腐蚀后晶界(GBs)周围的元素分布和微观结构进行了表征。结果表明,随着辐照剂量的增加,腐蚀厚度减小,并且存在晶间腐蚀。在辐照剂量较高的样品中,观察到纳米级 M2C 碳化物的分布,且分布更密集、更厚。它们的分布深度与铬耗尽区有关,抑制了铬向 GB 和表面的扩散。此外,还揭示了沿 GB 和辐照区域 M2C 碳化物的成核机制,这归因于热影响、腐蚀导致的元素优先溶解和辐照诱导偏析的综合效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Research and Technology-Jmr&t
Journal of Materials Research and Technology-Jmr&t Materials Science-Metals and Alloys
CiteScore
8.80
自引率
9.40%
发文量
1877
审稿时长
35 days
期刊介绍: The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.
期刊最新文献
Investigation of the impact of process parameters and thermal treatments on mechanical properties and microstructure of ScanCromAl ® manufactured via powder bed fusion laser beam process A novel high-Mn duplex twinning-induced plasticity lightweight steel with high yield strength and large ductility Influence of laser absorptivity of CuCr0.8 substrate surface state on the characteristics of laser directed energy deposition inconel 718 single track Additively manufactured FeCoNiSi0.2 alloy with excellent soft magnetic and mechanical properties through texture engineering Experimental study on the ballistic performance of CFRP/AFB sandwich plate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1