The effects of sintering temperatures on the microstructures and mechanical properties of titanium carbide particles reinforced iron matrix composites (TiC/Fe MCs) fabricated by the spark plasma sintering (SPS) process with pure element powders have been systematically investigated. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron back scattering diffractometer (EBSD), and energy dispersive spectroscopy (EDS) have been conducted for microstructural analysis. The results show that with increasing sintering temperatures, the porosity of the composites initially decreases and then increases. Simultaneously, the grain size gradually diminishes while element diffusion becomes more uniform. Upon reaching a critical sintering temperature (1120 °C), the original grain size disappears and carbides undergo decomposition and reprecipitation to reach an equilibrium state, with which optimal comprehensive properties can be achieved (porosity decreases to a minimum of 3.85%, grain size of 2.69 μm, Vickers hardness reaches 595 HV0.5, bending strength is at 662 MPa, coefficient of friction is at 0.74, and wear loss to 0.21 mg). These property enhancements have been attributed to reduced porosity in the composites, decreased grain size, and improved anchoring effect of carbides within the matrix. Additionally, the primary fracture mechanisms and wear mechanisms of TiC/Fe MCs with different process parameters have been analyzed. When the temperature is below 1080 °C, intergranular fracture predominates, whereas transgranular and ductile fractures become predominant above this threshold. When the temperature is below 1120 °C, fatigue wear, oxidation wear, and abrasive wear are predominantly observed. Conversely, when the temperature exceeds 1120 °C, oxidation wear and abrasive wear become the primary mechanisms.
Additive manufacturing (AM) has emerged as a pioneering method for fabricating high entropy alloys (HEAs), yet a comprehensive comparison of their nanoscale mechanical properties with those produced by the conventional casting method remains unexplored. In this study, the nanoindentation was utilized to investigate the nanoscale elastic and plastic characteristics in both additive-manufactured (AM-ed) and as-casted single-phase face-centered cubic (FCC) equiatomic CrMnFeCoNi HEAs. Herein, the hardness, reduced modulus, indentation size effect (ISE), yield strength, fracture toughness, and strain rate sensitivity were comprehensively investigated. The results indicated that the hardness of AM-ed HEA was higher than the as-casted HEA, and the reduced modulus values showed no notable distinction between the two samples. The AM-ed HEA demonstrated simultaneous enhancements in yield strength and fracture toughness compared to the as-casted HEA. The as-casted HEA possessed a more distinct indentation size effect (ISE) than the AM-ed HEA. It was observed that the AM-ed HEA exhibited relatively lower strain rate sensitivity and a larger activation volume. This direct comparison of the mechanical properties and deformation mechanisms from a nanoscale view offers unique insights for optimizing and advancing AM techniques in the fabrication of HEAs.
Since their advent in 2004, high-entropy alloys have allured the field of materials science and engineering. Laser cladding technology, with its advantages of a small heat-affected zone and rapid heating and cooling, has become a popular technique for preparing high-entropy alloy coatings. Traditional high-entropy alloys have the problem of strength-plasticity mismatch, which limits the further application of laser cladding high-entropy alloys in industry. As a method to solve these challenges, hard particle reinforced alloy coating technology can effectively control the comprehensive properties of high-entropy alloy coatings. This paper first explores and analyzes the five strengthening mechanisms and four main influencing factors of hard particle reinforced laser cladding alloy coatings. Then, from the perspective of introducing particle types, the research status of ceramic particles, rare earth particles and other types of hard particle reinforced laser cladding high entropy alloy coatings is introduced. Finally, the characteristics of hard particle reinforced laser cladding high-entropy alloy coatings are summarized, and future recommendations for hard particle reinforced alloy coatings technology and its application in laser cladding high-entropy alloys are proposed, which will be helpful for researchers and producers in this field.
In this work, the resistance spot welding (RSW) process was performed to join aluminum alloy and low-alloy carbon steel plates. The macro characteristics including nugget diameters and indentation rates, microstructure and tensile-shear strength of RSW joints were investigated. The results showed that the nugget of the RSW joints comprises a ‘bowl’ shape nugget on the aluminum side and an elliptical shape nugget on the steel side. Also, the intermetallic compound (IMC) layers containing Fe4Al13 and Fe2Al5 were formed around the aluminum/steel interface with the steel side having a tongue-shape and the aluminum side having a needle-shape. According to metallurgical evaluation and temperature distribution of RSW joints analyzed by the finite element method, the nugget on the aluminum side contained the dendritic grains and equiaxed dendritic grains. The nugget on the steel side consisted of a large amount of bainite and a small amount of coarse lath martensite. The nugget diameters and the indentations rates of RSW joints increased when increasing either welding current or welding time, and decreased when increasing the electrode pressure. The maximum values of nugget diameter and indentation rate of RSW joints were 9.076 mm and 4.144% when using the welding current of 16 kA, welding time of 450 ms and electrode force of 3 kN. In tensile-shear tests, the RSW joints showed a shear-off fracture mode. When increasing the welding current, welding time or electrode force, the tensile-shear strength of RSW joints increased first, and then reached a maximum, and finally decreased. The welding current of 16 kA, the welding time of 300 ms, and the electrode pressure of 3 kN were considered as the optimal welding parameters in the present study which resulted in the maximum tensile-shear strength of 2.24 kN. In addition, the IMC layers of the RSW joints exhibited a uniform and continuous appearance with a thickness of approximately 1.9 μm, and the IMC layer in the central area was thicker than that in the edge area.
The present study investigated the impact of 20–80 ppm Nb on the microstructure and properties of hypereutectoid pearlite steel. Remarkably, even trace amounts of Nb exhibited a favorable effect on the refinement of austenite grain. The addition of the Nb element resulted in a reduction of pearlite transition temperature, leading to a decrease of approximately 13% in lamellar spacing and 11% in the size of pearlite colonies. Furthermore, the dragging effect of the Nb element on the carbon atoms in hypereutectoid steel facilitated the control and refinement of network carbides. These findings offer valuable theoretical guidance for the production of ultra-high-strength wire rods. When the Nb content reached 80 ppm, it promoted the precipitation of (Ti, V)C, while simultaneously improving the morphology of square carbides. The grain refining strengthening mechanism accounted for about 70% of the overall strengthening effect observed in high carbon wire rods, with the influence of the Nb element primarily targeting grain refinement. Consequently, the incorporation of minute quantities of Nb presents a promising avenue for the development of ultra-high-strength hypereutectoid wire rods, offering significant potential for enhancing their strength properties.