{"title":"Developed square-root cubature Kalman filter-based solution for improving power system state estimation with unknown inputs and non-Gaussian noise","authors":"","doi":"10.1016/j.segan.2024.101523","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the ever-changing dynamics of power systems is crucial, and dynamic state estimation (DSE) plays a vital role in achieving this. However, traditional nonlinear Kalman filters (NKFs) face limitations: lack of access to control inputs and presence of non-Gaussian noise in measurements, impacting their accuracy and robustness. This research introduces a novel robust DSE method that tackles these challenges head-on. For the first time in DSE, it leverages the predictive power of Holt-Winters Triple Exponential Smoothing to model the time-varying behavior of control inputs. This innovative approach allows for the simultaneous estimation of dynamic state variables such as the rotor angle and rotor speed changes, as well as transient voltages and control inputs like mechanical input torque and excitation voltage, even in the presence of non-Gaussian noise. Furthermore, the method employs modified projection statistics and a Cauchy function. This unique combination effectively bounds the influence of observation outliers while maintaining high statistical estimation efficiency. This innovative approach utilizes a square cubature Kalman filter (SCKF) for enhanced numerical stability. Extensive simulations under various anomalous conditions demonstrate the method's superior accuracy and efficiency in estimating the state vector. These results highlight its potential to significantly improve power system estimation and pave the way for real-time applications.</p></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Grids & Networks","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352467724002522","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the ever-changing dynamics of power systems is crucial, and dynamic state estimation (DSE) plays a vital role in achieving this. However, traditional nonlinear Kalman filters (NKFs) face limitations: lack of access to control inputs and presence of non-Gaussian noise in measurements, impacting their accuracy and robustness. This research introduces a novel robust DSE method that tackles these challenges head-on. For the first time in DSE, it leverages the predictive power of Holt-Winters Triple Exponential Smoothing to model the time-varying behavior of control inputs. This innovative approach allows for the simultaneous estimation of dynamic state variables such as the rotor angle and rotor speed changes, as well as transient voltages and control inputs like mechanical input torque and excitation voltage, even in the presence of non-Gaussian noise. Furthermore, the method employs modified projection statistics and a Cauchy function. This unique combination effectively bounds the influence of observation outliers while maintaining high statistical estimation efficiency. This innovative approach utilizes a square cubature Kalman filter (SCKF) for enhanced numerical stability. Extensive simulations under various anomalous conditions demonstrate the method's superior accuracy and efficiency in estimating the state vector. These results highlight its potential to significantly improve power system estimation and pave the way for real-time applications.
期刊介绍:
Sustainable Energy, Grids and Networks (SEGAN)is an international peer-reviewed publication for theoretical and applied research dealing with energy, information grids and power networks, including smart grids from super to micro grid scales. SEGAN welcomes papers describing fundamental advances in mathematical, statistical or computational methods with application to power and energy systems, as well as papers on applications, computation and modeling in the areas of electrical and energy systems with coupled information and communication technologies.