Model-free detection and quantitative assessment of micro short circuits in lithium-ion battery packs based on incremental capacity and unsupervised clustering

IF 1.3 4区 化学 Q4 ELECTROCHEMISTRY International Journal of Electrochemical Science Pub Date : 2024-09-17 DOI:10.1016/j.ijoes.2024.100794
Da Lei , Meng Zhang , Qiang Guo , Yibin Gao , Zhigang Bai , Qi Yang , Ke Fu , Chao Lyu
{"title":"Model-free detection and quantitative assessment of micro short circuits in lithium-ion battery packs based on incremental capacity and unsupervised clustering","authors":"Da Lei ,&nbsp;Meng Zhang ,&nbsp;Qiang Guo ,&nbsp;Yibin Gao ,&nbsp;Zhigang Bai ,&nbsp;Qi Yang ,&nbsp;Ke Fu ,&nbsp;Chao Lyu","doi":"10.1016/j.ijoes.2024.100794","DOIUrl":null,"url":null,"abstract":"<div><p>Timely diagnosis of micro short circuit (MSC) faults is crucial for ensuring the safe operation of lithium-ion battery energy storage systems. Existing diagnostic methods face limitations such as high dependency on battery models, difficulty in determining accurate diagnostic thresholds, or low computational efficiency. This work presents a model-free approach for the detection and quantitative assessment of MSCs in lithium-ion battery packs, with incremental capacity (IC) and unsupervised clustering. First, the IC is extracted from charging voltage data to effectively characterize MSC faults in lithium-ion batteries. Next, principal component analysis is used to map the high-dimensional feature space onto a two-dimensional plane to facilitate fault detection and result visualization. Then, an unsupervised clustering algorithm is employed for anomaly detection to identify MSC cells within the battery pack. For the detected MSC cells, a method based on the maximum charging voltage difference between adjacent cycles is designed to estimate the MSC resistance, quantitatively assessing the severity and evolution stage of the MSC. Experimental results show that the accuracy of MSC detection is 99.17 % and the minimum relative error of short-circuit resistance estimation is 1.20 %, which demonstrates the effectiveness and feasibility of the proposed method.</p></div>","PeriodicalId":13872,"journal":{"name":"International Journal of Electrochemical Science","volume":"19 10","pages":"Article 100794"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1452398124003353/pdfft?md5=2d5dc2144a829a663587ccffc24608ca&pid=1-s2.0-S1452398124003353-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrochemical Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1452398124003353","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Timely diagnosis of micro short circuit (MSC) faults is crucial for ensuring the safe operation of lithium-ion battery energy storage systems. Existing diagnostic methods face limitations such as high dependency on battery models, difficulty in determining accurate diagnostic thresholds, or low computational efficiency. This work presents a model-free approach for the detection and quantitative assessment of MSCs in lithium-ion battery packs, with incremental capacity (IC) and unsupervised clustering. First, the IC is extracted from charging voltage data to effectively characterize MSC faults in lithium-ion batteries. Next, principal component analysis is used to map the high-dimensional feature space onto a two-dimensional plane to facilitate fault detection and result visualization. Then, an unsupervised clustering algorithm is employed for anomaly detection to identify MSC cells within the battery pack. For the detected MSC cells, a method based on the maximum charging voltage difference between adjacent cycles is designed to estimate the MSC resistance, quantitatively assessing the severity and evolution stage of the MSC. Experimental results show that the accuracy of MSC detection is 99.17 % and the minimum relative error of short-circuit resistance estimation is 1.20 %, which demonstrates the effectiveness and feasibility of the proposed method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于增量容量和无监督聚类的锂离子电池组微短路无模型检测和定量评估
及时诊断微短路(MSC)故障对于确保锂离子电池储能系统的安全运行至关重要。现有的诊断方法存在一些局限性,如高度依赖电池模型、难以确定准确的诊断阈值或计算效率低。本研究提出了一种无模型方法,利用增量容量(IC)和无监督聚类来检测和定量评估锂离子电池组中的间充质干细胞。首先,从充电电压数据中提取增量容量,以有效描述锂离子电池中的 MSC 故障。然后,利用主成分分析法将高维特征空间映射到二维平面上,以方便故障检测和结果可视化。然后,采用无监督聚类算法进行异常检测,以识别电池组中的 MSC 电池。对于检测到的间隙电池,设计了一种基于相邻循环之间最大充电电压差的方法来估算间隙电池电阻,从而定量评估间隙电池的严重程度和演变阶段。实验结果表明,MSC 检测的准确率为 99.17%,短路电阻估算的最小相对误差为 1.20%,证明了所提方法的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
20.00%
发文量
714
审稿时长
2.6 months
期刊介绍: International Journal of Electrochemical Science is a peer-reviewed, open access journal that publishes original research articles, short communications as well as review articles in all areas of electrochemistry: Scope - Theoretical and Computational Electrochemistry - Processes on Electrodes - Electroanalytical Chemistry and Sensor Science - Corrosion - Electrochemical Energy Conversion and Storage - Electrochemical Engineering - Coatings - Electrochemical Synthesis - Bioelectrochemistry - Molecular Electrochemistry
期刊最新文献
Editorial Board Front Matter1:Full Title Page Retraction notice to ‘Electrochemical behavior of salbutamol, clenbuterol, ractopamine and albuterol at CNTs/GCE’ [Int. J. Electrochem. Sci. 17/5 (2022) 220567] Retraction notice to “Fe–Co co-doped 1D@2D carbon-based composite as an efficient catalyst for Zn-air batteries” [Int. J. Electrochem. Sci., 19 (2024) 100766] Robust lithium-ion battery state of health estimation based on recursive feature elimination-deep Bidirectional long short-term memory model using partial charging data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1