Orosomucoid 2 is an endogenous regulator of neuronal mitochondrial biogenesis and promotes functional recovery post-stroke

IF 9.1 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pharmacological research Pub Date : 2024-09-16 DOI:10.1016/j.phrs.2024.107422
{"title":"Orosomucoid 2 is an endogenous regulator of neuronal mitochondrial biogenesis and promotes functional recovery post-stroke","authors":"","doi":"10.1016/j.phrs.2024.107422","DOIUrl":null,"url":null,"abstract":"<div><p>Development of functional recovery therapies is critical to reduce the global impact of stroke as the leading cause of long-term disability. Our previous studies found that acute-phase protein orosomucoid (ORM) could provide an up to 6 h therapeutic time window to reduce infarct volume in acute ischemic stroke by improving endothelial function. However, its role in neurons and functional recovery post-stroke remains largely unknown. Here, we showed that exogenous ORM administration with initial injection at 0.5 h (early) or 12 h (delayed) post-MCAO daily for consecutive 7 days significantly decreased infarct area, improved motor and cognitive functional recovery, and promoted mitochondrial biogenesis after MCAO. While neuron-specific knockout of ORM2, a dominant subtype of ORM in the brain, produced opposite effects which could be rescued by exogenous ORM. <em>In vitro</em>, exogenous ORM protected SH-SY5Y cells from OGD-induced damage and promoted mitochondrial biogenesis, while endogenous ORM2 deficiency worsened these processes. Mechanistically, inactivation of CCR5 or AMPK eliminated the protective effects of ORM on neuronal damage and mitochondrial biogenesis. Taken together, our findings demonstrate that ORM, mainly ORM2, is an endogenous regulator of neuronal mitochondrial biogenesis by activating CCR5/AMPK signaling pathway, and might act as a potential therapeutic target for the functional recovery post-stroke.</p></div>","PeriodicalId":19918,"journal":{"name":"Pharmacological research","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1043661824003670/pdfft?md5=74c745ae0dab55a9bd23540ed1197938&pid=1-s2.0-S1043661824003670-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1043661824003670","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Development of functional recovery therapies is critical to reduce the global impact of stroke as the leading cause of long-term disability. Our previous studies found that acute-phase protein orosomucoid (ORM) could provide an up to 6 h therapeutic time window to reduce infarct volume in acute ischemic stroke by improving endothelial function. However, its role in neurons and functional recovery post-stroke remains largely unknown. Here, we showed that exogenous ORM administration with initial injection at 0.5 h (early) or 12 h (delayed) post-MCAO daily for consecutive 7 days significantly decreased infarct area, improved motor and cognitive functional recovery, and promoted mitochondrial biogenesis after MCAO. While neuron-specific knockout of ORM2, a dominant subtype of ORM in the brain, produced opposite effects which could be rescued by exogenous ORM. In vitro, exogenous ORM protected SH-SY5Y cells from OGD-induced damage and promoted mitochondrial biogenesis, while endogenous ORM2 deficiency worsened these processes. Mechanistically, inactivation of CCR5 or AMPK eliminated the protective effects of ORM on neuronal damage and mitochondrial biogenesis. Taken together, our findings demonstrate that ORM, mainly ORM2, is an endogenous regulator of neuronal mitochondrial biogenesis by activating CCR5/AMPK signaling pathway, and might act as a potential therapeutic target for the functional recovery post-stroke.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Pharmacological research
Pharmacological research 医学-药学
CiteScore
18.70
自引率
3.20%
发文量
491
审稿时长
8 days
期刊介绍: Pharmacological Research publishes cutting-edge articles in biomedical sciences to cover a broad range of topics that move the pharmacological field forward. Pharmacological research publishes articles on molecular, biochemical, translational, and clinical research (including clinical trials); it is proud of its rapid publication of accepted papers that comprises a dedicated, fast acceptance and publication track for high profile articles.
期刊最新文献
Molecular mechanisms underlying hepatoprotective activity of lutein in the context of intestinal failure-associated liver disease Orosomucoid 2 is an endogenous regulator of neuronal mitochondrial biogenesis and promotes functional recovery post-stroke Extracellular vesicles in the HCC microenvironment: Implications for therapy and biomarkers Online ligand screening for cytochrome C from herbal medicines through “four-in-one” measurement A new perspective on liver diseases: Focusing on the mitochondria-associated endoplasmic reticulum membranes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1