Mingu Zhou , Xinhuan Cao , Lei Yang , Wenjing Wang , Haihua Wang , Zhenyu Li
{"title":"A green approach for non-thermal concentration of skim milk by forward osmosis combined with membrane distillation for draw solution regeneration","authors":"Mingu Zhou , Xinhuan Cao , Lei Yang , Wenjing Wang , Haihua Wang , Zhenyu Li","doi":"10.1016/j.cherd.2024.09.007","DOIUrl":null,"url":null,"abstract":"<div><p>As a cost-effective and sustainable technique, the hybrid forward osmosis (FO)-membrane distillation (MD) system has been conceptually demonstrated for the non-thermal concentration of skim milk and the regeneration of draw solution (DS). The FO unit was employed to concentrate skim milk, achieving up to a 2.91-fold based on total soluble solids (TSS) within 24 h. Meanwhile, the MD unit was used for the regeneration of the diluted DS from the FO process, restoring its high osmotic pressure. Enzymatic cleaning containing 0.1 % trypsin and 0.1 % lactase proved to be the most efficient cleaning method to restore water flux. The diluted DS from FO could be reconcentrated to its original level using MD process. The analysis of membrane fouling revealed that proteins and polysaccharides were the primary constituents of the fouling layer during the concentration of skim milk. The degree of membrane fouling was affected by the driving force and hydrodynamic conditions. Furthermore, the hybrid FO-MD system showed superior performance, with energy consumption nearly 50 % lower than that of traditional evaporator. Overall, this work provides a scientific and engineering foundation for the potential application of the FO-MD process in the non-thermal concentration of skim milk and the recovery of DS.</p></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"210 ","pages":"Pages 469-480"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876224005367","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
As a cost-effective and sustainable technique, the hybrid forward osmosis (FO)-membrane distillation (MD) system has been conceptually demonstrated for the non-thermal concentration of skim milk and the regeneration of draw solution (DS). The FO unit was employed to concentrate skim milk, achieving up to a 2.91-fold based on total soluble solids (TSS) within 24 h. Meanwhile, the MD unit was used for the regeneration of the diluted DS from the FO process, restoring its high osmotic pressure. Enzymatic cleaning containing 0.1 % trypsin and 0.1 % lactase proved to be the most efficient cleaning method to restore water flux. The diluted DS from FO could be reconcentrated to its original level using MD process. The analysis of membrane fouling revealed that proteins and polysaccharides were the primary constituents of the fouling layer during the concentration of skim milk. The degree of membrane fouling was affected by the driving force and hydrodynamic conditions. Furthermore, the hybrid FO-MD system showed superior performance, with energy consumption nearly 50 % lower than that of traditional evaporator. Overall, this work provides a scientific and engineering foundation for the potential application of the FO-MD process in the non-thermal concentration of skim milk and the recovery of DS.
期刊介绍:
ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering.
Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.