首页 > 最新文献

Chemical Engineering Research & Design最新文献

英文 中文
The effect of green hydrogen feed rate variations on e-methanol synthesis by dynamic simulation 动态模拟绿色氢气进料速率变化对电子甲醇合成的影响
IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-11-12 DOI: 10.1016/j.cherd.2024.11.012
Viet Hung Nguyen, Arto Laari, Tuomas Koiranen
Methanol is a promising fuel and important intermediate chemical in the transformation of renewable power to chemical products since it can be directly synthesized from captured CO2 and electrolytic H2. However, the intermittency of renewable power generation poses challenges to green methanol production process design and operation, necessitating high operational flexibility to facilitate coupling with intermittent renewable power. In this study, a green crude methanol (a mixture of methanol and water from methanol synthesis) production process was dynamically modeled. The results show that the minimum load of the model is 20 %, with maximum allowable ramping rates of 3.25 %/minute for ramp-down and 2.10 %/minute for ramp-up between full and minimum load. The introduction of a standby mode, in which a make-up H2 stream is supplied when electrolytic H2 is unavailable, allows continuous operation of the process at the minimum load. With the constructed control structure, the model demonstrates that the process can effectively handle continuous variations of electrolytic H2 input.
甲醇是一种前景广阔的燃料,也是将可再生能源转化为化工产品的重要中间化学品,因为它可以直接从捕获的二氧化碳和电解氢气中合成。然而,可再生能源发电的间歇性给绿色甲醇生产工艺的设计和操作带来了挑战,需要较高的操作灵活性,以促进与间歇性可再生能源发电的耦合。本研究对绿色粗甲醇(甲醇合成过程中产生的甲醇和水的混合物)生产过程进行了动态建模。结果表明,模型的最小负荷为 20%,在满负荷和最小负荷之间的最大允许斜率为:斜率下降 3.25%/分钟,斜率上升 2.10%/分钟。由于引入了待机模式,即在电解 H2 不可用时提供补充 H2 流,因此该工艺可在最低负荷下连续运行。通过所构建的控制结构,该模型表明该工艺可有效处理电解 H2 输入的连续变化。
{"title":"The effect of green hydrogen feed rate variations on e-methanol synthesis by dynamic simulation","authors":"Viet Hung Nguyen,&nbsp;Arto Laari,&nbsp;Tuomas Koiranen","doi":"10.1016/j.cherd.2024.11.012","DOIUrl":"10.1016/j.cherd.2024.11.012","url":null,"abstract":"<div><div>Methanol is a promising fuel and important intermediate chemical in the transformation of renewable power to chemical products since it can be directly synthesized from captured CO<sub>2</sub> and electrolytic H<sub>2</sub>. However, the intermittency of renewable power generation poses challenges to green methanol production process design and operation, necessitating high operational flexibility to facilitate coupling with intermittent renewable power. In this study, a green crude methanol (a mixture of methanol and water from methanol synthesis) production process was dynamically modeled. The results show that the minimum load of the model is 20 %, with maximum allowable ramping rates of 3.25 %/minute for ramp-down and 2.10 %/minute for ramp-up between full and minimum load. The introduction of a standby mode, in which a make-up H<sub>2</sub> stream is supplied when electrolytic H<sub>2</sub> is unavailable, allows continuous operation of the process at the minimum load. With the constructed control structure, the model demonstrates that the process can effectively handle continuous variations of electrolytic H<sub>2</sub> input.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"212 ","pages":"Pages 293-306"},"PeriodicalIF":3.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental investigation in a forced draft wet cooling tower using aluminum oxide nano particles 在强制通风湿式冷却塔中使用氧化铝纳米颗粒的实验研究
IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-11-10 DOI: 10.1016/j.cherd.2024.11.010
Sampath Suranjan Salins , Shiva Kumar , Kota Reddy , Sawan Shetty , Ana Tejero-González
Cooling towers are used in industries to remove the excess heat produced by industrial processes and machineries. This cooling phenomenon and its rate can be improved by mixing it with the nanoparticles. The present work focuses on the design and construction of a counter flow forced draft cooling tower with the addition of aluminum oxide (Al2O3) nanoparticles with water to enhance heat & mass transfer. Experiments are performed with the variation of the flow rate of water, water temperature, and the volume fraction of nanoparticles from 0 % to 2 % by volume fraction. The output parameters like coefficient of performance (COP), cooling characteristics coefficient (CCC), Rate of evaporation (ER), cooling tower efficiency & range have been analyzed. Nanofluid properties like viscosity, density & thermal conductivity for different volume fractions have been examined. It is observed that viscosity and thermal conductivity increased with an increase in volume fractions. Viscosity decreased whereas conductivity increased with temperature rise. Results obtained from cooling tower experiments indicated a maximum COP, CCC, ER, efficiency, and range equal to 7.12, 3.54, 3.95 g/s, 75.55 %, and 29.8ᵒC, respectively. For the various volume fractions studied, nanofluid with 2 % outperformed others with higher heat transfer rates and range values. For the 2 % volume fraction of the nanoparticles, make-up water requirements reduced by 76.19 % when it is compared to the normal water without the nanoparticles. Also, it is found that the cooling tower range, heat transfer rate, and efficiency increased by 10 %, 10.2 %, and 4.16 % when nanofluid concentration is varied from 0 % to 2 % by volume for the air velocity and water flow rate of 13 m/s and 3.5 Liters per minute (LPM) respectively.
冷却塔在工业中用于去除工业流程和机器产生的多余热量。通过与纳米颗粒混合,可以改善这种冷却现象及其冷却速度。本研究的重点是设计和建造一种逆流强制通风冷却塔,在水中添加纳米氧化铝(Al2O3)颗粒,以增强热量& ;传质。实验中,水的流速、水温和纳米颗粒的体积分数(按体积分数从 0 % 到 2 %)都发生了变化。对性能系数(COP)、冷却特性系数(CCC)、蒸发率(ER)、冷却塔效率及范围等输出参数进行了分析。研究了不同体积分数的纳米流体特性,如粘度、密度和热导率。据观察,粘度和热导率随着体积分数的增加而增加。粘度随温度升高而降低,而热导率则随温度升高而升高。冷却塔实验结果表明,最大 COP、CCC、ER、效率和范围分别为 7.12、3.54、3.95 g/s、75.55 % 和 29.8ᵒC。在所研究的各种体积分数中,2% 的纳米流体具有更高的传热率和范围值,其性能优于其他纳米流体。与不含纳米颗粒的普通水相比,纳米颗粒体积分数为 2% 的纳米流体所需的补给水减少了 76.19%。此外,研究还发现,当空气流速和水流量分别为 13 米/秒和 3.5 升/分钟(LPM)时,当纳米流体的体积浓度从 0% 变化到 2% 时,冷却塔的范围、传热率和效率分别增加了 10%、10.2% 和 4.16%。
{"title":"Experimental investigation in a forced draft wet cooling tower using aluminum oxide nano particles","authors":"Sampath Suranjan Salins ,&nbsp;Shiva Kumar ,&nbsp;Kota Reddy ,&nbsp;Sawan Shetty ,&nbsp;Ana Tejero-González","doi":"10.1016/j.cherd.2024.11.010","DOIUrl":"10.1016/j.cherd.2024.11.010","url":null,"abstract":"<div><div>Cooling towers are used in industries to remove the excess heat produced by industrial processes and machineries. This cooling phenomenon and its rate can be improved by mixing it with the nanoparticles. The present work focuses on the design and construction of a counter flow forced draft cooling tower with the addition of aluminum oxide (Al2O3) nanoparticles with water to enhance heat &amp; mass transfer. Experiments are performed with the variation of the flow rate of water, water temperature, and the volume fraction of nanoparticles from 0 % to 2 % by volume fraction. The output parameters like coefficient of performance (COP), cooling characteristics coefficient (CCC), Rate of evaporation (ER), cooling tower efficiency &amp; range have been analyzed. Nanofluid properties like viscosity, density &amp; thermal conductivity for different volume fractions have been examined. It is observed that viscosity and thermal conductivity increased with an increase in volume fractions. Viscosity decreased whereas conductivity increased with temperature rise. Results obtained from cooling tower experiments indicated a maximum COP, CCC, ER, efficiency, and range equal to 7.12, 3.54, 3.95 g/s, 75.55 %, and 29.8ᵒC, respectively. For the various volume fractions studied, nanofluid with 2 % outperformed others with higher heat transfer rates and range values. For the 2 % volume fraction of the nanoparticles, make-up water requirements reduced by 76.19 % when it is compared to the normal water without the nanoparticles. Also, it is found that the cooling tower range, heat transfer rate, and efficiency increased by 10 %, 10.2 %, and 4.16 % when nanofluid concentration is varied from 0 % to 2 % by volume for the air velocity and water flow rate of 13 m/s and 3.5 Liters per minute (LPM) respectively.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"212 ","pages":"Pages 281-292"},"PeriodicalIF":3.7,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A re-optimized design of mesh-type transition zone for large-scale PEM fuel cells considering two-phase flow distribution 考虑两相流分布的大规模 PEM 燃料电池网状过渡区再优化设计
IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-11-10 DOI: 10.1016/j.cherd.2024.11.004
Bin Wang , Weitong Pan , Zichao Hu , Guoyu Zhang , Longfei Tang , Xueli Chen , Fuchen Wang
The flow distribution in the Flow Field Plate (FFP) has a significant impact on the performance and durability of large-scale Proton Exchange Membrane (PEM) fuel cells. Most of the existing studies focused only on gas-phase flow, while the actual cell operation is gas-liquid two-phase flow. In this study, numerical simulations of single- and two-phase flow distributions are performed for three-dimensional FFPs. The Coefficient of Variation (CV), defined as the ratio between the standard deviation and the mean of the velocities in channels, serves as the indicator of flow uniformity. Firstly, the differences between gas- and two-phase flow distribution characteristics of the FFP with the combined-mesh-type transition zone we previously constructed are elucidated. Secondly, a re-optimized layout with horizontal mesh apertures in the distribution zone and the addition of horizontal mesh in the collection zone is proposed. The design philosophy and methodology based on the coupled flow and resistance regulation mechanism are elucidated. The single- and two-phase CV values are further reduced by 41.25 % and 6.05 %, respectively. Thirdly, the re-optimized structure is applied to different FFP geometries, including smaller development spaces and larger cell areas, where the superior effects on flow distribution are validated.
流场板(FFP)中的流动分布对大规模质子交换膜(PEM)燃料电池的性能和耐用性有重大影响。现有研究大多只关注气相流,而实际电池运行时是气液两相流。本研究对三维燃料电池的单相流和两相流分布进行了数值模拟。变异系数(CV)被定义为通道中速度的标准偏差与平均值之比,是流动均匀性的指标。首先,阐明了 FFP 与我们之前建造的组合式网状过渡区的气体和两相流动分布特征之间的差异。其次,提出了一种重新优化的布局,即在分配区设置水平网孔,并在收集区增加水平网孔。阐明了基于流量和阻力耦合调节机制的设计理念和方法。单相和两相 CV 值分别进一步降低了 41.25 % 和 6.05 %。第三,将重新优化的结构应用于不同的 FFP 几何结构,包括更小的开发空间和更大的单元面积,验证了其对流量分布的卓越效果。
{"title":"A re-optimized design of mesh-type transition zone for large-scale PEM fuel cells considering two-phase flow distribution","authors":"Bin Wang ,&nbsp;Weitong Pan ,&nbsp;Zichao Hu ,&nbsp;Guoyu Zhang ,&nbsp;Longfei Tang ,&nbsp;Xueli Chen ,&nbsp;Fuchen Wang","doi":"10.1016/j.cherd.2024.11.004","DOIUrl":"10.1016/j.cherd.2024.11.004","url":null,"abstract":"<div><div>The flow distribution in the Flow Field Plate (FFP) has a significant impact on the performance and durability of large-scale Proton Exchange Membrane (PEM) fuel cells. Most of the existing studies focused only on gas-phase flow, while the actual cell operation is gas-liquid two-phase flow. In this study, numerical simulations of single- and two-phase flow distributions are performed for three-dimensional FFPs. The Coefficient of Variation (<em>CV</em>), defined as the ratio between the standard deviation and the mean of the velocities in channels, serves as the indicator of flow uniformity. Firstly, the differences between gas- and two-phase flow distribution characteristics of the FFP with the combined-mesh-type transition zone we previously constructed are elucidated. Secondly, a re-optimized layout with horizontal mesh apertures in the distribution zone and the addition of horizontal mesh in the collection zone is proposed. The design philosophy and methodology based on the coupled flow and resistance regulation mechanism are elucidated. The single- and two-phase <em>CV</em> values are further reduced by 41.25 % and 6.05 %, respectively. Thirdly, the re-optimized structure is applied to different FFP geometries, including smaller development spaces and larger cell areas, where the superior effects on flow distribution are validated.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"212 ","pages":"Pages 217-229"},"PeriodicalIF":3.7,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coagulative removal of polyethylene microplastics using polyaluminum chloride in conjunction with laminarin 使用聚合氯化铝和层压剂凝结去除聚乙烯微塑料
IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-11-09 DOI: 10.1016/j.cherd.2024.11.015
Jinlei Chen, Jiajing Lin, Wenjin Li, Yanyun Wang, Huabin Huang
As emerging pollutants in water, microplastics pose potential risks to aquatic organisms and human health. Previous studies have shown that traditional metal coagulants are effective in removing microplastics from water, but they come with drawbacks such as high chemical dosage and metal residues. Therefore, it is important to explore more efficient coagulation systems. This study utilized laminarin (LA) as a coagulant aid in combination with polyaluminum chloride (PAC) to investigate its enhanced coagulation performance on polyethylene microplastics in water. The performance of coagulation systems for the removal of microplastics was evaluated for different agent dosages, pH, anion and HA content. Experimental results demonstrated that the compounded system (PAC-LA) significantly improved the removal efficiency of PE microplastics compared to the single PAC system, achieving a removal rate of 91.5 % while reducing the dosage of PAC. The enhanced coagulation mechanism of LA was analyzed using various techniques including scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and zeta potential analysis. The results indicated that charge neutralization and sweep flocculation were the primary coagulation mechanisms in the presence of PAC alone. The effect of charge neutralization and adsorption was strengthened with the introduction of LA. The coagulation system of PAC-LA showed higher removal rates of PE microplastics under different environmental conditions such as varying pH levels, co-existing anions, and humic acid, suggesting a promising application for microplastic control in water.
作为水中新出现的污染物,微塑料对水生生物和人类健康构成潜在风险。以往的研究表明,传统的金属混凝剂能有效去除水中的微塑料,但也存在化学用量大和金属残留等缺点。因此,探索更高效的混凝系统非常重要。本研究利用层皮素(LA)作为助凝剂,并结合聚合氯化铝(PAC),研究其对水中聚乙烯微塑料的增强混凝性能。针对不同的助凝剂用量、pH 值、阴离子和 HA 含量,对混凝系统去除微塑料的性能进行了评估。实验结果表明,与单一 PAC 系统相比,复合系统(PAC-LA)显著提高了对聚乙烯微塑料的去除效率,在减少 PAC 用量的同时,去除率达到 91.5%。利用扫描电子显微镜(SEM)、傅立叶变换红外光谱(FTIR)、X 射线光电子能谱(XPS)和 zeta 电位分析等多种技术分析了 LA 的增强凝结机理。结果表明,在单独使用 PAC 的情况下,电荷中和与扫掠絮凝是主要的混凝机制。引入 LA 后,电荷中和与吸附作用得到加强。在不同的环境条件下(如不同的 pH 值、共存阴离子和腐殖酸),PAC-LA 混凝系统对 PE 微塑料的去除率更高,这表明其在水中微塑料控制方面具有广阔的应用前景。
{"title":"Coagulative removal of polyethylene microplastics using polyaluminum chloride in conjunction with laminarin","authors":"Jinlei Chen,&nbsp;Jiajing Lin,&nbsp;Wenjin Li,&nbsp;Yanyun Wang,&nbsp;Huabin Huang","doi":"10.1016/j.cherd.2024.11.015","DOIUrl":"10.1016/j.cherd.2024.11.015","url":null,"abstract":"<div><div>As emerging pollutants in water, microplastics pose potential risks to aquatic organisms and human health. Previous studies have shown that traditional metal coagulants are effective in removing microplastics from water, but they come with drawbacks such as high chemical dosage and metal residues. Therefore, it is important to explore more efficient coagulation systems. This study utilized laminarin (LA) as a coagulant aid in combination with polyaluminum chloride (PAC) to investigate its enhanced coagulation performance on polyethylene microplastics in water. The performance of coagulation systems for the removal of microplastics was evaluated for different agent dosages, pH, anion and HA content. Experimental results demonstrated that the compounded system (PAC-LA) significantly improved the removal efficiency of PE microplastics compared to the single PAC system, achieving a removal rate of 91.5 % while reducing the dosage of PAC. The enhanced coagulation mechanism of LA was analyzed using various techniques including scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and zeta potential analysis. The results indicated that charge neutralization and sweep flocculation were the primary coagulation mechanisms in the presence of PAC alone. The effect of charge neutralization and adsorption was strengthened with the introduction of LA. The coagulation system of PAC-LA showed higher removal rates of PE microplastics under different environmental conditions such as varying pH levels, co-existing anions, and humic acid, suggesting a promising application for microplastic control in water.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"212 ","pages":"Pages 230-239"},"PeriodicalIF":3.7,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimising furfural production from lignocellulosic biomass: Feedstock selection, Process enhancement, and Techno-Economic and Environmental viability 优化木质纤维素生物质的糠醛生产:原料选择、工艺改进以及技术经济和环境可行性
IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-11-09 DOI: 10.1016/j.cherd.2024.10.035
Léa Pierrat, Pablo García-Triñanes
This review critically examines the state of the art in furfural production technologies from biomass-derived resources, focusing on recent advancements aimed at enhancing process efficiency. Beginning with an overview of current methodologies, the study explores and maps the diversity of available feedstocks, assessing their suitability for optimised furfural generation. Conversion efficiency is analysed with attention to yield optimisation, highlighting the influence of catalysts, temperature control, and enzymatic processes. Recent advancements in process intensification—such as hybrid systems, heat integration, and innovative technologies—are discussed as key pathways for achieving scalable and sustainable production. A review of techno-economic analysis (TEA) sources assesses the commercial feasibility of furfural production from various feedstocks, with a specific focus on bagasse. Additionally, a review of available life cycle assessments (LCAs) offers insights into the environmental impacts of different production methods, contributing to the sustainable development of the industry. The review concludes by summarising critical findings and identifying research priorities essential for advancing towards the ultimate goal of economically feasible and commercially scalable furfural production from lignocellulosic biomass.
本综述对利用生物质资源生产糠醛的技术现状进行了严格审查,重点关注旨在提高工艺效率的最新进展。本研究首先概述了当前的方法,然后探讨并描绘了现有原料的多样性,评估了它们对优化糠醛生产的适用性。研究分析了转化效率,关注产量优化,强调催化剂、温度控制和酶法工艺的影响。讨论了工艺强化方面的最新进展,如混合系统、热集成和创新技术,这些都是实现可扩展和可持续生产的关键途径。对技术经济分析 (TEA) 来源的审查评估了利用各种原料生产糠醛的商业可行性,并特别关注甘蔗渣。此外,对现有生命周期评估(LCAs)的综述深入分析了不同生产方法对环境的影响,有助于该行业的可持续发展。综述最后总结了重要发现,并确定了研究重点,这对推动实现利用木质纤维素生物质生产经济上可行、商业上可扩展的糠醛这一最终目标至关重要。
{"title":"Optimising furfural production from lignocellulosic biomass: Feedstock selection, Process enhancement, and Techno-Economic and Environmental viability","authors":"Léa Pierrat,&nbsp;Pablo García-Triñanes","doi":"10.1016/j.cherd.2024.10.035","DOIUrl":"10.1016/j.cherd.2024.10.035","url":null,"abstract":"<div><div>This review critically examines the state of the art in furfural production technologies from biomass-derived resources, focusing on recent advancements aimed at enhancing process efficiency. Beginning with an overview of current methodologies, the study explores and maps the diversity of available feedstocks, assessing their suitability for optimised furfural generation. Conversion efficiency is analysed with attention to yield optimisation, highlighting the influence of catalysts, temperature control, and enzymatic processes. Recent advancements in process intensification—such as hybrid systems, heat integration, and innovative technologies—are discussed as key pathways for achieving scalable and sustainable production. A review of techno-economic analysis (TEA) sources assesses the commercial feasibility of furfural production from various feedstocks, with a specific focus on bagasse. Additionally, a review of available life cycle assessments (LCAs) offers insights into the environmental impacts of different production methods, contributing to the sustainable development of the industry. The review concludes by summarising critical findings and identifying research priorities essential for advancing towards the ultimate goal of economically feasible and commercially scalable furfural production from lignocellulosic biomass.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"212 ","pages":"Pages 261-280"},"PeriodicalIF":3.7,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An entropy measure-based study on flow pattern of gas–liquid two-phase flow in a U-Tube 基于熵值的 U 型管中气液两相流流动模式研究
IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-11-06 DOI: 10.1016/j.cherd.2024.10.028
Hao Hu, Peng Li, Qijun Wang, Jun Wang
U-tubes are widely applied in gas–liquid two-phase transportation in chemical engineering. The diverse flow patterns within these tubes significantly affect the pressure loss, heat transfer efficiency, and even the fluid-induced vibration amplitude of the tubes. This study explores the complex flow pattern features in a U-tube in a vertical plane and focuses on recognizing them. For the acquisition and classification of flow patterns, a Computational Fluid Dynamics (CFD) model for gas–liquid two-phase flow is first established, and its quantitative calculation error is ensured to be less than 5%. Then, the spatiotemporal evolution characteristics of flow patterns is analyzed. The real-time pressure drop response is chosen as the representation signal, and its nonlinear features in the time and frequency domain under different flow patterns are explored. A nonlinear time series is constructed by extracting a segment from the real-time pressure drop data, and six entropy measures are applied to analyze and identify them. Finally, the sensitivity of entropy measures to both the time series lengths and the tested sections are evaluated. Results show that there are six typical flow patterns in a U-tube. According to most entropy measures, the bubble flow has the highest complexity; however, the plug flow presents the lowest complexity. In the U-bend, pressure drop signals for the bubble and annular flows show random fluctuations within a specific range, in contrast to the marked periodicity in plug flow signals, while wavy and slug flows exhibit intermittent peak values. Including the upstream and downstream straight pipes in the analysis, rather than focusing solely on the U-bend, significantly increases the complexity of the stratified, plug, and slug flows. Fuzzy entropy is an effective tool for identifying the six flow patterns, demonstrating good resilience to variations in the length of the data series. This characteristic makes it highly useful for real-time identification of flow patterns in the U-bend sections of non-transparent U-tubes, offering considerable potential in chemical equipment.
U 型管广泛应用于化学工程中的气液两相输送。这些管内的各种流型会对管子的压力损失、传热效率,甚至流体引起的振动幅度产生重大影响。本研究探讨了 U 型管在垂直面上的复杂流型特征,并重点对其进行了识别。为了获取流型并对其进行分类,首先建立了气液两相流的计算流体动力学(CFD)模型,并确保其定量计算误差小于 5%。然后,分析流动模式的时空演变特征。选取实时压降响应作为表示信号,探讨其在不同流态下的时域和频域非线性特征。通过从实时压降数据中提取一个片段来构建非线性时间序列,并应用六种熵指标对其进行分析和识别。最后,评估了熵指标对时间序列长度和测试断面的敏感性。结果表明,U 型管中有六种典型的流动模式。根据大多数熵值,气泡流的复杂性最高;然而,堵塞流的复杂性最低。在 U 型弯管中,气泡流和环形流的压降信号在特定范围内随机波动,而塞流信号则具有明显的周期性,而波浪形流和蛞蝓流则表现出断断续续的峰值。将上下游直管也纳入分析范围,而不是只关注 U 形弯管,这大大增加了分层流、堵塞流和蛞蝓流的复杂性。模糊熵是识别六种流动模式的有效工具,对数据序列长度的变化具有良好的适应性。这一特点使其在实时识别非透明 U 形管 U 形弯曲部分的流动模式方面非常有用,在化工设备中具有相当大的潜力。
{"title":"An entropy measure-based study on flow pattern of gas–liquid two-phase flow in a U-Tube","authors":"Hao Hu,&nbsp;Peng Li,&nbsp;Qijun Wang,&nbsp;Jun Wang","doi":"10.1016/j.cherd.2024.10.028","DOIUrl":"10.1016/j.cherd.2024.10.028","url":null,"abstract":"<div><div>U-tubes are widely applied in gas–liquid two-phase transportation in chemical engineering. The diverse flow patterns within these tubes significantly affect the pressure loss, heat transfer efficiency, and even the fluid-induced vibration amplitude of the tubes. This study explores the complex flow pattern features in a U-tube in a vertical plane and focuses on recognizing them. For the acquisition and classification of flow patterns, a Computational Fluid Dynamics (CFD) model for gas–liquid two-phase flow is first established, and its quantitative calculation error is ensured to be less than 5%. Then, the spatiotemporal evolution characteristics of flow patterns is analyzed. The real-time pressure drop response is chosen as the representation signal, and its nonlinear features in the time and frequency domain under different flow patterns are explored. A nonlinear time series is constructed by extracting a segment from the real-time pressure drop data, and six entropy measures are applied to analyze and identify them. Finally, the sensitivity of entropy measures to both the time series lengths and the tested sections are evaluated. Results show that there are six typical flow patterns in a U-tube. According to most entropy measures, the bubble flow has the highest complexity; however, the plug flow presents the lowest complexity. In the U-bend, pressure drop signals for the bubble and annular flows show random fluctuations within a specific range, in contrast to the marked periodicity in plug flow signals, while wavy and slug flows exhibit intermittent peak values. Including the upstream and downstream straight pipes in the analysis, rather than focusing solely on the U-bend, significantly increases the complexity of the stratified, plug, and slug flows. Fuzzy entropy is an effective tool for identifying the six flow patterns, demonstrating good resilience to variations in the length of the data series. This characteristic makes it highly useful for real-time identification of flow patterns in the U-bend sections of non-transparent U-tubes, offering considerable potential in chemical equipment.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"212 ","pages":"Pages 201-216"},"PeriodicalIF":3.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Donnan dialysis-based approach for reclamation of waste acid with a low concentration 基于唐南透析的低浓度废酸回收方法
IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-11-06 DOI: 10.1016/j.cherd.2024.11.009
Sheng Ma , Yu-xiang Jia , Xiao-guang Xu , Meng Wang
This study provides a proof-of-concept investigation into the direct utilization of low-concentration recovered acid as a proton source for the efficient recovery of organic acids via Donnan dialysis, a scenario of particular significance in industrial parks. A primary objective is to examine the implications of waste acid concentration on the coupling process. To evaluate the technological feasibility, process simulations are performed utilizing a mathematical model grounded in the Nernst-Planck equation and associated equilibrium relationships. Furthermore, a variety of experimental conditions, encompassing different types of organic acids and varying concentrations of waste acid, are explored to analyze the ion substitution behaviors involved. The findings from both simulations and experiments indicate that weaker organic acids demonstrate superior performance, particularly regarding recovery rates and process efficiency. Additionally, it is revealed that merely increasing the concentration of the draw solution does not constitute an effective approach for improving the DD-based organic acid recovery process, thereby suggesting the potential for the direct application of low-concentration recovered acid. Given its significant advantages, the proposed DD-based coupling technology shows considerable promise for future applications.
本研究对直接利用低浓度回收酸作为质子源,通过唐南透析高效回收有机酸进行了概念验证调查,这在工业园区中具有特别重要的意义。首要目标是研究废酸浓度对耦合过程的影响。为了评估技术可行性,我们利用基于 Nernst-Planck 方程和相关平衡关系的数学模型进行了工艺模拟。此外,还探讨了各种实验条件,包括不同类型的有机酸和不同浓度的废酸,以分析其中的离子置换行为。模拟和实验结果表明,较弱的有机酸表现出更优越的性能,尤其是在回收率和工艺效率方面。此外,研究还发现,仅仅提高汲取溶液的浓度并不能有效改善基于 DD 的有机酸回收工艺,这表明低浓度回收酸具有直接应用的潜力。鉴于其显著优势,拟议的基于 DD 的耦合技术在未来的应用中大有可为。
{"title":"Donnan dialysis-based approach for reclamation of waste acid with a low concentration","authors":"Sheng Ma ,&nbsp;Yu-xiang Jia ,&nbsp;Xiao-guang Xu ,&nbsp;Meng Wang","doi":"10.1016/j.cherd.2024.11.009","DOIUrl":"10.1016/j.cherd.2024.11.009","url":null,"abstract":"<div><div>This study provides a proof-of-concept investigation into the direct utilization of low-concentration recovered acid as a proton source for the efficient recovery of organic acids via Donnan dialysis, a scenario of particular significance in industrial parks. A primary objective is to examine the implications of waste acid concentration on the coupling process. To evaluate the technological feasibility, process simulations are performed utilizing a mathematical model grounded in the Nernst-Planck equation and associated equilibrium relationships. Furthermore, a variety of experimental conditions, encompassing different types of organic acids and varying concentrations of waste acid, are explored to analyze the ion substitution behaviors involved. The findings from both simulations and experiments indicate that weaker organic acids demonstrate superior performance, particularly regarding recovery rates and process efficiency. Additionally, it is revealed that merely increasing the concentration of the draw solution does not constitute an effective approach for improving the DD-based organic acid recovery process, thereby suggesting the potential for the direct application of low-concentration recovered acid. Given its significant advantages, the proposed DD-based coupling technology shows considerable promise for future applications.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"212 ","pages":"Pages 191-200"},"PeriodicalIF":3.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A temporal convolution network-based just-in-time learning method for industrial quality variable prediction 基于时间卷积网络的工业质量变量预测及时学习法
IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-11-06 DOI: 10.1016/j.cherd.2024.11.003
Xiaoqing Zheng, Baofan Wu, Huiming Chen, Anke Xue, Song Zheng, Ming Ge, Yaguang Kong
Real-time acquisition of quality variables is paramount for enhancing control and optimization of industrial processes. Process modeling methods, such as soft sensors, offer a means to predict difficult-to-obtain quality variables using easily measurable process parameters. However, the dynamic nature of industrial processes poses significant challenges to modeling. For instance, conventional models are typically trained offline using historical data, rendering them incapable of adapting to real-time changes in data distribution or environmental conditions. To tackle this challenge, we introduce a novel approach termed the Residual Temporal Attention Temporal Convolution Network (RTA-TCN) and propose a just-in-time learning method based on RTA-TCN for industrial process modeling. The RTA-TCN model incorporates temporal attention into TCN, enabling the integration of previous time-step process variables into the current ones, as well as the fusion of internally relevant features among inputs. Moreover, to prevent the partial loss of original information during feature integration, residual connections are introduced into the temporal attention mechanism. These connections facilitate the retention of original feature information to a maximal extent while integrating relevant features. Consequently, the proposed RTA-TCN demonstrates significant advantages in handling the non-linearity and long-term dynamic dependencies inherent in industrial variables. Additionally, the proposed just-in-time learning method leverages RTA-TCN as a local model and updates it in real-time using online industrial data. This just-in-time learning method enables effective adaptation to varying data distributions and environmental conditions. We validate the performance of our method using two industrial datasets (Debutanizer Column and Sulfur Recovery Unit).
实时获取质量变量对于加强控制和优化工业流程至关重要。软传感器等过程建模方法提供了一种利用易于测量的过程参数预测难以获取的质量变量的方法。然而,工业流程的动态性质给建模带来了巨大挑战。例如,传统模型通常使用历史数据进行离线训练,无法适应数据分布或环境条件的实时变化。为了应对这一挑战,我们引入了一种名为 "残差时空注意力时空卷积网络"(RTA-TCN)的新方法,并提出了一种基于 RTA-TCN 的及时学习方法,用于工业流程建模。RTA-TCN 模型将时间注意力纳入 TCN,从而能够将前一时间步的过程变量整合到当前变量中,并在输入中融合内部相关特征。此外,为了防止在特征整合过程中部分丢失原始信息,在时间注意力机制中引入了残差连接。这些连接有助于在整合相关特征的同时最大限度地保留原始特征信息。因此,拟议的 RTA-TCN 在处理工业变量固有的非线性和长期动态依赖性方面具有显著优势。此外,所提出的即时学习方法利用 RTA-TCN 作为局部模型,并利用在线工业数据对其进行实时更新。这种即时学习方法能有效适应不同的数据分布和环境条件。我们使用两个工业数据集(脱碱塔和硫磺回收装置)验证了我们方法的性能。
{"title":"A temporal convolution network-based just-in-time learning method for industrial quality variable prediction","authors":"Xiaoqing Zheng,&nbsp;Baofan Wu,&nbsp;Huiming Chen,&nbsp;Anke Xue,&nbsp;Song Zheng,&nbsp;Ming Ge,&nbsp;Yaguang Kong","doi":"10.1016/j.cherd.2024.11.003","DOIUrl":"10.1016/j.cherd.2024.11.003","url":null,"abstract":"<div><div>Real-time acquisition of quality variables is paramount for enhancing control and optimization of industrial processes. Process modeling methods, such as soft sensors, offer a means to predict difficult-to-obtain quality variables using easily measurable process parameters. However, the dynamic nature of industrial processes poses significant challenges to modeling. For instance, conventional models are typically trained offline using historical data, rendering them incapable of adapting to real-time changes in data distribution or environmental conditions. To tackle this challenge, we introduce a novel approach termed the Residual Temporal Attention Temporal Convolution Network (RTA-TCN) and propose a just-in-time learning method based on RTA-TCN for industrial process modeling. The RTA-TCN model incorporates temporal attention into TCN, enabling the integration of previous time-step process variables into the current ones, as well as the fusion of internally relevant features among inputs. Moreover, to prevent the partial loss of original information during feature integration, residual connections are introduced into the temporal attention mechanism. These connections facilitate the retention of original feature information to a maximal extent while integrating relevant features. Consequently, the proposed RTA-TCN demonstrates significant advantages in handling the non-linearity and long-term dynamic dependencies inherent in industrial variables. Additionally, the proposed just-in-time learning method leverages RTA-TCN as a local model and updates it in real-time using online industrial data. This just-in-time learning method enables effective adaptation to varying data distributions and environmental conditions. We validate the performance of our method using two industrial datasets (Debutanizer Column and Sulfur Recovery Unit).</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"212 ","pages":"Pages 168-184"},"PeriodicalIF":3.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coalescence performance of Janus filter for the removal of oil mist 用于去除油雾的 Janus 过滤器的聚结性能
IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-11-03 DOI: 10.1016/j.cherd.2024.11.002
Chengwei Xu , Yifu Wang , Yan Yu , Lirong Li
The wettability has an important effect on coalescence performance of filter. In this paper, we utilized a commercial glass fiber filter as the substrate to prepared the Janus filter through dip-coating and electrospraying. The Janus filter exhibited a remarkable reduction in pressure drop, with only 2.8 kPa of wet pressure drop compared to 6.1 kPa for the original filter and 5.4 kPa for the oleophilic filter. Notably, the coating depth played a critical role in enhancing the coalescence performance of the Janus filter. Furthermore, when placing the Janus filter in reverse direction, its quality factor increased by 2.87 times, highlighting that orientation is an essential factor for coalescence performance of Janus filters. The results indicate great potential in the application of Janus filters for coalescence filtration.
润湿性对过滤器的凝聚性能有重要影响。本文以商用玻璃纤维过滤器为基材,通过浸涂和电喷雾制备了 Janus 过滤器。Janus 过滤器的压降显著降低,湿压降仅为 2.8 kPa,而原过滤器为 6.1 kPa,亲油过滤器为 5.4 kPa。值得注意的是,涂层深度对提高 Janus 过滤器的凝聚性能起着至关重要的作用。此外,将獐牙菜过滤器反向放置时,其品质因数增加了 2.87 倍,这表明方向是獐牙菜过滤器聚结性能的关键因素。研究结果表明,在聚结过滤中应用 Janus 过滤器具有巨大的潜力。
{"title":"Coalescence performance of Janus filter for the removal of oil mist","authors":"Chengwei Xu ,&nbsp;Yifu Wang ,&nbsp;Yan Yu ,&nbsp;Lirong Li","doi":"10.1016/j.cherd.2024.11.002","DOIUrl":"10.1016/j.cherd.2024.11.002","url":null,"abstract":"<div><div>The wettability has an important effect on coalescence performance of filter. In this paper, we utilized a commercial glass fiber filter as the substrate to prepared the Janus filter through dip-coating and electrospraying. The Janus filter exhibited a remarkable reduction in pressure drop, with only 2.8 kPa of wet pressure drop compared to 6.1 kPa for the original filter and 5.4 kPa for the oleophilic filter. Notably, the coating depth played a critical role in enhancing the coalescence performance of the Janus filter. Furthermore, when placing the Janus filter in reverse direction, its quality factor increased by 2.87 times, highlighting that orientation is an essential factor for coalescence performance of Janus filters. The results indicate great potential in the application of Janus filters for coalescence filtration.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"212 ","pages":"Pages 185-190"},"PeriodicalIF":3.7,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fly ash-based zeolites: from waste to value – A comprehensive overview of synthesis, properties, and applications 粉煤灰基沸石:从废物到价值--合成、特性和应用综述
IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-11-02 DOI: 10.1016/j.cherd.2024.10.031
Zhen Liang , Zhimei Liu , Lian Yu , Wenjuan Wang
The innovative utilization of fly ash for synthesizing zeolites presents notable environmental and economic benefits, positioning it as a pivotal area of research. This review distinguishes itself by offering a critical and up-to-date synthesis of the latest advancements in fly ash-based zeolite production, surpassing existing literature in both depth and breadth. It meticulously explores not only the fundamental principles and conventional synthesis methods—such as hydrothermal and sol-gel techniques—but also delves into emerging approaches like microwave-assisted, ultrasound-enhanced, fusion and melting, and ionothermal synthesis. A unique contribution of this paper is its comprehensive analysis of the interplay between synthesis parameters (composition, temperature, reaction time, and pH) and their nuanced effects on the crystal structure, morphology, and functional properties of the resulting zeolites. Furthermore, the review introduces novel classifications of zeolites derived from varied fly ash sources, highlighting their tailored applications in cutting-edge fields such as advanced soil remediation, precision nutrient retention systems, next-generation wastewater treatment technologies, and efficient removal of emerging gaseous pollutants. By identifying and discussing the latest trends and gaps in the current research landscape, this paper not only synthesizes existing knowledge but also proposes future directions, including the development of hybrid zeolite materials and the integration of machine learning techniques for optimized synthesis. This comprehensive and forward-looking perspective significantly advances the understanding of fly ash-derived zeolites and sets the stage for future innovations in sustainable material science.
以创新方式利用粉煤灰合成沸石具有显著的环境和经济效益,使其成为一个关键的研究领域。本综述对基于粉煤灰的沸石生产的最新进展进行了批判性的最新综述,在深度和广度上都超越了现有文献。它不仅细致地探讨了水热法和溶胶-凝胶技术等基本原理和传统合成方法,还深入研究了微波辅助、超声波增强、熔融和离子热合成等新兴方法。本文的一个独特贡献是全面分析了合成参数(成分、温度、反应时间和 pH 值)之间的相互作用及其对所得沸石的晶体结构、形态和功能特性的细微影响。此外,该综述还介绍了从各种粉煤灰来源中提取的沸石的新分类,重点介绍了它们在先进土壤修复、精密养分保留系统、下一代废水处理技术和高效去除新兴气体污染物等尖端领域的定制应用。通过识别和讨论当前研究领域的最新趋势和差距,本文不仅归纳了现有知识,还提出了未来发展方向,包括开发混合沸石材料和整合机器学习技术以优化合成。这一全面而具有前瞻性的观点极大地促进了人们对粉煤灰衍生沸石的了解,并为未来可持续材料科学的创新奠定了基础。
{"title":"Fly ash-based zeolites: from waste to value – A comprehensive overview of synthesis, properties, and applications","authors":"Zhen Liang ,&nbsp;Zhimei Liu ,&nbsp;Lian Yu ,&nbsp;Wenjuan Wang","doi":"10.1016/j.cherd.2024.10.031","DOIUrl":"10.1016/j.cherd.2024.10.031","url":null,"abstract":"<div><div>The innovative utilization of fly ash for synthesizing zeolites presents notable environmental and economic benefits, positioning it as a pivotal area of research. This review distinguishes itself by offering a critical and up-to-date synthesis of the latest advancements in fly ash-based zeolite production, surpassing existing literature in both depth and breadth. It meticulously explores not only the fundamental principles and conventional synthesis methods—such as hydrothermal and sol-gel techniques—but also delves into emerging approaches like microwave-assisted, ultrasound-enhanced, fusion and melting, and ionothermal synthesis. A unique contribution of this paper is its comprehensive analysis of the interplay between synthesis parameters (composition, temperature, reaction time, and pH) and their nuanced effects on the crystal structure, morphology, and functional properties of the resulting zeolites. Furthermore, the review introduces novel classifications of zeolites derived from varied fly ash sources, highlighting their tailored applications in cutting-edge fields such as advanced soil remediation, precision nutrient retention systems, next-generation wastewater treatment technologies, and efficient removal of emerging gaseous pollutants. By identifying and discussing the latest trends and gaps in the current research landscape, this paper not only synthesizes existing knowledge but also proposes future directions, including the development of hybrid zeolite materials and the integration of machine learning techniques for optimized synthesis. This comprehensive and forward-looking perspective significantly advances the understanding of fly ash-derived zeolites and sets the stage for future innovations in sustainable material science.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"212 ","pages":"Pages 240-260"},"PeriodicalIF":3.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chemical Engineering Research & Design
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1