{"title":"G-C3N4 tubes decorated with MnMoO4·H2O: Outstanding S-scheme photocatalyst for detoxification of water pollutants upon visible light","authors":"Zahra Lahootifar , Aziz Habibi-Yangjeh , Zahra Salmanzadeh-Jamadi , Alireza Khataee","doi":"10.1016/j.flatc.2024.100738","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, the utilization of heterogeneous photocatalysts has been proposed as an effective solution for environmental purification, as one of the solar energy conversion processes, under mild conditions. In this research, MnMoO<sub>4</sub>·H<sub>2</sub>O nanoparticles were anchored on tubular g-C<sub>3</sub>N<sub>4</sub> (abbreviated as TGCN) by a one-pot hydrothermal route. The phase structure, electronic environment, spectroscopic characteristics, composition, morphology, surface area, and electrochemical properties of the resultant materials were explored using XRD, XPS, EDX, FESEM, HRTEM, FTIR, PL, photocurrent, EIS, and BET analyses. The photocatalytic activity of TGCN/MnMoO<sub>4</sub>·H<sub>2</sub>O (20 %) nanocomposite was 4.25, 5.36, 9.07, 12.4, and 8.84 times better than modified GCN, and 3.91, 2.77, 6.24, 10.9, and 6.82 times higher than MnMoO<sub>4</sub>·H<sub>2</sub>O in removals of tetracycline, rhodamine B, methylene blue, methyl orange, and fuchsine pollutants, respectively. The improved visible-light absorption and rapid charge migration/separation between TGCN and MnMoO<sub>4</sub>·H<sub>2</sub>O counterparts through S-scheme heterojunction route were the key reasons for the boosted photocatalytic performance. The biocompatibility of solution after decomposition of tetracycline via the growth of wheat seeds was verified. Finally, the stability of the binary TGCN/MnMoO<sub>4</sub>·H<sub>2</sub>O (20 %) heterostructure was measured by the stability test after four reuses.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"48 ","pages":"Article 100738"},"PeriodicalIF":5.9000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724001326","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, the utilization of heterogeneous photocatalysts has been proposed as an effective solution for environmental purification, as one of the solar energy conversion processes, under mild conditions. In this research, MnMoO4·H2O nanoparticles were anchored on tubular g-C3N4 (abbreviated as TGCN) by a one-pot hydrothermal route. The phase structure, electronic environment, spectroscopic characteristics, composition, morphology, surface area, and electrochemical properties of the resultant materials were explored using XRD, XPS, EDX, FESEM, HRTEM, FTIR, PL, photocurrent, EIS, and BET analyses. The photocatalytic activity of TGCN/MnMoO4·H2O (20 %) nanocomposite was 4.25, 5.36, 9.07, 12.4, and 8.84 times better than modified GCN, and 3.91, 2.77, 6.24, 10.9, and 6.82 times higher than MnMoO4·H2O in removals of tetracycline, rhodamine B, methylene blue, methyl orange, and fuchsine pollutants, respectively. The improved visible-light absorption and rapid charge migration/separation between TGCN and MnMoO4·H2O counterparts through S-scheme heterojunction route were the key reasons for the boosted photocatalytic performance. The biocompatibility of solution after decomposition of tetracycline via the growth of wheat seeds was verified. Finally, the stability of the binary TGCN/MnMoO4·H2O (20 %) heterostructure was measured by the stability test after four reuses.
期刊介绍:
FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)