Yuhang Hao , Zengfu Wang , Jing Fu , Xianglong Bai , Can Li , Quan Pan
{"title":"Combinatorial-restless-bandit-based transmitter–receiver online selection of distributed MIMO radar with non-stationary channels","authors":"Yuhang Hao , Zengfu Wang , Jing Fu , Xianglong Bai , Can Li , Quan Pan","doi":"10.1016/j.sigpro.2024.109707","DOIUrl":null,"url":null,"abstract":"<div><p>In a distributed multiple-input multiple-output (MIMO) radar for tracking moving targets, optimizing sensible selections of the transmitter–receiver pairs is crucial for maximizing the sum of signal-to-interference-plus-noise ratios (SINRs), as it directly affects the tracking accuracy. In solving the trade-off between exploitation and exploration in non-stationary channels, the optimization problem is modeled by a restless multi-armed bandits model. This paper regards the estimated SINR mean reward as the state of an arm (transceiver channel). The SINR reward of each arm is estimated based on whether it is probed. A closed loop is established between SINR rewards and the dynamic states of targets, which are estimated via the interacting multiple model-unscented Kalman filter. The combinatorial optimized selection of transmitter–receiver pairs at each time is accomplished by using the binary particle swarm optimization with the SINR index fitness function, where the index represents the upper bound on the confidence of the SINR reward. Above all, a multi-group combinatorial-restless-bandit closed-loop (MG-CRB-CL) algorithm is proposed. Simulation results for different scenarios are provided to verify the effectiveness and superior performance of MG-CRB-CL.</p></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"227 ","pages":"Article 109707"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016516842400327X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In a distributed multiple-input multiple-output (MIMO) radar for tracking moving targets, optimizing sensible selections of the transmitter–receiver pairs is crucial for maximizing the sum of signal-to-interference-plus-noise ratios (SINRs), as it directly affects the tracking accuracy. In solving the trade-off between exploitation and exploration in non-stationary channels, the optimization problem is modeled by a restless multi-armed bandits model. This paper regards the estimated SINR mean reward as the state of an arm (transceiver channel). The SINR reward of each arm is estimated based on whether it is probed. A closed loop is established between SINR rewards and the dynamic states of targets, which are estimated via the interacting multiple model-unscented Kalman filter. The combinatorial optimized selection of transmitter–receiver pairs at each time is accomplished by using the binary particle swarm optimization with the SINR index fitness function, where the index represents the upper bound on the confidence of the SINR reward. Above all, a multi-group combinatorial-restless-bandit closed-loop (MG-CRB-CL) algorithm is proposed. Simulation results for different scenarios are provided to verify the effectiveness and superior performance of MG-CRB-CL.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.