{"title":"Contrast-preserving image smoothing via the truncated first-order rational function","authors":"Jiaqi Mei , Xiaoguang Lv , Biao Fang , Le Jiang","doi":"10.1016/j.sigpro.2024.109700","DOIUrl":null,"url":null,"abstract":"<div><p>The main task of image smoothing is to remove the insignificant details of the input image while preserving salient structural edges. In the fields of computer vision and graphics, image smoothing techniques are of great practical importance. In this paper, we investigate a new nonconvex variational optimization model for contrast-preserving image smoothing based on the truncated first-order rational (TFOR) penalty function. We employ an iterative numerical method that utilizes the half-quadratic minimization to effectively solve the proposed model. To validate the effectiveness of the proposed method, we compare it with some related state-of-the-art methods. Experimental results are given to show that the proposed method performs well in preserving the image contrast while maintaining the important edges and structures. We apply the proposed method on various classic image processing tasks such as clip-art compression artifact removal, detail enhancement, image denoising, image abstraction, flash and no-flash image restoration, and guided depth map upsampling.</p></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"227 ","pages":"Article 109700"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424003207","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The main task of image smoothing is to remove the insignificant details of the input image while preserving salient structural edges. In the fields of computer vision and graphics, image smoothing techniques are of great practical importance. In this paper, we investigate a new nonconvex variational optimization model for contrast-preserving image smoothing based on the truncated first-order rational (TFOR) penalty function. We employ an iterative numerical method that utilizes the half-quadratic minimization to effectively solve the proposed model. To validate the effectiveness of the proposed method, we compare it with some related state-of-the-art methods. Experimental results are given to show that the proposed method performs well in preserving the image contrast while maintaining the important edges and structures. We apply the proposed method on various classic image processing tasks such as clip-art compression artifact removal, detail enhancement, image denoising, image abstraction, flash and no-flash image restoration, and guided depth map upsampling.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.