Feature Engineering for estimating the maturity of lunar soils from spectroscopic data

Sandeepan Dhoundiyal , Shivam Kumar , Debosmita Paul , Malcolm Aranha , Guneshwar Thangjam , Alok Porwal
{"title":"Feature Engineering for estimating the maturity of lunar soils from spectroscopic data","authors":"Sandeepan Dhoundiyal ,&nbsp;Shivam Kumar ,&nbsp;Debosmita Paul ,&nbsp;Malcolm Aranha ,&nbsp;Guneshwar Thangjam ,&nbsp;Alok Porwal","doi":"10.1016/j.oreoa.2024.100064","DOIUrl":null,"url":null,"abstract":"<div><p>Existing algorithms for estimating the maturity of lunar soils are not optimized for data from any of the orbital sensors which are currently active. This paper addresses this issue by proposing an algorithm for estimating soil maturity (I<sub>S</sub>/FeO) using spectroscopic data at the spectral resolution of the Moon Mineralogy Mapper (M<sup>3</sup>). As part of this method, four key spectral parameters for estimating I<sub>S</sub>/FeO are identified and used to train a Support Vector Regression (SVR) model. The physical significance of each parameter is discussed, and the equation of the predictive hyperplane is provided for increased transparency. The proposed method outperforms state-of-the-art algorithms and returns a coefficient of determination (<em>R</em><sup><em>2</em></sup>) of 0.92 over the Lunar Soil Characterization Consortium (LSCC) dataset.</p></div>","PeriodicalId":100993,"journal":{"name":"Ore and Energy Resource Geology","volume":"17 ","pages":"Article 100064"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ore and Energy Resource Geology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666261224000269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Existing algorithms for estimating the maturity of lunar soils are not optimized for data from any of the orbital sensors which are currently active. This paper addresses this issue by proposing an algorithm for estimating soil maturity (IS/FeO) using spectroscopic data at the spectral resolution of the Moon Mineralogy Mapper (M3). As part of this method, four key spectral parameters for estimating IS/FeO are identified and used to train a Support Vector Regression (SVR) model. The physical significance of each parameter is discussed, and the equation of the predictive hyperplane is provided for increased transparency. The proposed method outperforms state-of-the-art algorithms and returns a coefficient of determination (R2) of 0.92 over the Lunar Soil Characterization Consortium (LSCC) dataset.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从光谱数据估算月球土壤成熟度的特征工程
现有的估算月球土壤成熟度的算法没有针对目前使用的任何轨道传感器的数据进行优化。本文针对这一问题,提出了一种利用月球矿物学成像仪(M3)光谱分辨率的光谱数据估算土壤成熟度(IS/FeO)的算法。作为该方法的一部分,确定了用于估算 IS/FeO 的四个关键光谱参数,并将其用于训练支持向量回归(SVR)模型。讨论了每个参数的物理意义,并提供了预测超平面方程以增加透明度。所提出的方法优于最先进的算法,在月球土壤特性联合会(LSCC)数据集上的判定系数(R2)为 0.92。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extract and analysis of surface deformation caused by Mengyuan earthquake in Qinghai using ascending and descending tracks D-InSAR technology Uranium distribution in the promise reefs of the Mesoarchean Westrand Group, Witwatersrand Supergroup, South Africa Feature Engineering for estimating the maturity of lunar soils from spectroscopic data A review of granite melt source, and associated gold fertility potential in Batouri, Betare Oya, Meiganga, and Ngazi-Tina gold districts in the eastern goldfield of Cameroon: Insight from zircon chemistry Research progress of fluid inclusions and its application in iron oxide copper-gold (IOCG) deposits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1