Xinyang Sun , Han Wang , Ni Lu , Jiangang Zhang , Chaoqun Ma , Xuhai Xiong , Zhenguo Zhu , Chang Liu , You Zeng
{"title":"Graphene-based hierarchical structure for significantly enhancing thermal conductivity of composites with high mechanical reinforcement","authors":"Xinyang Sun , Han Wang , Ni Lu , Jiangang Zhang , Chaoqun Ma , Xuhai Xiong , Zhenguo Zhu , Chang Liu , You Zeng","doi":"10.1016/j.compscitech.2024.110865","DOIUrl":null,"url":null,"abstract":"<div><p>Significant enhancement in out-of-plane thermal conductivity of carbon fiber/epoxy laminated composites without sacrificing mechanical strength is of great challenge for advanced composites. In this study, a novel graphene-based hierarchical structure was constructed by combining graphene foams (GrFs) with graphene nanoplatelets (GNPs) together and laminating with carbon fiber (CF) fabrics. The GrFs acted as thermally-conductive skeletons in bridging CF fabrics together to remarkably increase out-of-plane thermal conductivity of composites, while the GNPs were helpful to further increasing heat-transfer paths and effectively transferring stress between continuous CFs for high mechanical reinforcement. The hierarchical composites exhibited extremely high out-of-plane thermal conductivity of 2.64 W/m·K, increasing by 158.8 % than that of CF/Ep composites, and they also showed satisfactory tensile, flexural, and interlaminar shear strength. Such high performance is mainly due to the hierarchical structure, continuous heat-transfer paths, synergetic enhancement of GrFs with GNPs, and strong interfacial interactions between components for high-efficiency heat and stress transfer.</p></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"258 ","pages":"Article 110865"},"PeriodicalIF":8.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824004354","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Significant enhancement in out-of-plane thermal conductivity of carbon fiber/epoxy laminated composites without sacrificing mechanical strength is of great challenge for advanced composites. In this study, a novel graphene-based hierarchical structure was constructed by combining graphene foams (GrFs) with graphene nanoplatelets (GNPs) together and laminating with carbon fiber (CF) fabrics. The GrFs acted as thermally-conductive skeletons in bridging CF fabrics together to remarkably increase out-of-plane thermal conductivity of composites, while the GNPs were helpful to further increasing heat-transfer paths and effectively transferring stress between continuous CFs for high mechanical reinforcement. The hierarchical composites exhibited extremely high out-of-plane thermal conductivity of 2.64 W/m·K, increasing by 158.8 % than that of CF/Ep composites, and they also showed satisfactory tensile, flexural, and interlaminar shear strength. Such high performance is mainly due to the hierarchical structure, continuous heat-transfer paths, synergetic enhancement of GrFs with GNPs, and strong interfacial interactions between components for high-efficiency heat and stress transfer.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.