{"title":"Intelligent dielectric method for evaluating some qualitative characteristics of date fruit","authors":"Hadi Karimi","doi":"10.1016/j.postharvbio.2024.113195","DOIUrl":null,"url":null,"abstract":"<div><p>This study aimed to develop an intelligent capacitive system to measure the moisture content of date fruit and to recognize fruit characteristics, such as variety, size, and ripeness. A cost-effective and fast non-contact measurement solution using the capacitive method was employed to create a platform with a variable oscillator to measure the dielectric properties of date fruit after harvest. Different date varieties, namely Zahedi, Ghasb, Mazafati and Medjool, representing dry, semi-dry and wet date fruit, respectively, were selected to model and calibrate the proposed system. Samples of date fruit of each variety were selected at three different ripening stages (Khalal, Rutab and Tamr), ranging from high to low moisture content. Additionally, five distinct moisture contents were determined using the oven method. The moisture content of the date fruit samples ranged from 8.6 % to 86.9 % owing to the selection of four varieties, three ripening stages and five stepwise thermal treatments. After acquiring electronic information, 80 % of the dataset was allocated for training purposes, while the remaining 20 % was reserved for evaluating the final regression model. The results showed that of all the trained machine learning models, Support Vector Regression (SVR) had the highest potential for predicting moisture content at the specified frequencies. The SVR model was fine-tuned by fitting 1824 combinations of hyperparameters over 6 folds. The tuned model's prediction for 20 % of the assigned test data resulted in a coefficient of determination of 88 % compared to the actual moisture content, with a Root Mean Square Error (RMSE) of 9.4 %. Furthermore, the dielectric-based system classified the ripening stages using a Multilayer Perceptron (MLP) model, achieving F1 scores of 87 %, 60 % and 68 % for the Khalal, Rutab and Tamr stages, respectively. The MLP regression model also predicted the geometric mean of the date fruit with a coefficient of determination of 0.82 and an RMSE of 3.05 mm.</p></div>","PeriodicalId":20328,"journal":{"name":"Postharvest Biology and Technology","volume":"219 ","pages":"Article 113195"},"PeriodicalIF":6.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S092552142400440X/pdfft?md5=935410163205797e62205ff8b0558160&pid=1-s2.0-S092552142400440X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Postharvest Biology and Technology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092552142400440X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to develop an intelligent capacitive system to measure the moisture content of date fruit and to recognize fruit characteristics, such as variety, size, and ripeness. A cost-effective and fast non-contact measurement solution using the capacitive method was employed to create a platform with a variable oscillator to measure the dielectric properties of date fruit after harvest. Different date varieties, namely Zahedi, Ghasb, Mazafati and Medjool, representing dry, semi-dry and wet date fruit, respectively, were selected to model and calibrate the proposed system. Samples of date fruit of each variety were selected at three different ripening stages (Khalal, Rutab and Tamr), ranging from high to low moisture content. Additionally, five distinct moisture contents were determined using the oven method. The moisture content of the date fruit samples ranged from 8.6 % to 86.9 % owing to the selection of four varieties, three ripening stages and five stepwise thermal treatments. After acquiring electronic information, 80 % of the dataset was allocated for training purposes, while the remaining 20 % was reserved for evaluating the final regression model. The results showed that of all the trained machine learning models, Support Vector Regression (SVR) had the highest potential for predicting moisture content at the specified frequencies. The SVR model was fine-tuned by fitting 1824 combinations of hyperparameters over 6 folds. The tuned model's prediction for 20 % of the assigned test data resulted in a coefficient of determination of 88 % compared to the actual moisture content, with a Root Mean Square Error (RMSE) of 9.4 %. Furthermore, the dielectric-based system classified the ripening stages using a Multilayer Perceptron (MLP) model, achieving F1 scores of 87 %, 60 % and 68 % for the Khalal, Rutab and Tamr stages, respectively. The MLP regression model also predicted the geometric mean of the date fruit with a coefficient of determination of 0.82 and an RMSE of 3.05 mm.
期刊介绍:
The journal is devoted exclusively to the publication of original papers, review articles and frontiers articles on biological and technological postharvest research. This includes the areas of postharvest storage, treatments and underpinning mechanisms, quality evaluation, packaging, handling and distribution of fresh horticultural crops including fruit, vegetables, flowers and nuts, but excluding grains, seeds and forages.
Papers reporting novel insights from fundamental and interdisciplinary research will be particularly encouraged. These disciplines include systems biology, bioinformatics, entomology, plant physiology, plant pathology, (bio)chemistry, engineering, modelling, and technologies for nondestructive testing.
Manuscripts on fresh food crops that will be further processed after postharvest storage, or on food processes beyond refrigeration, packaging and minimal processing will not be considered.