KSCN molten salt synthesis of hierarchical MoS2/NPC for rapid and durable sodium storage

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Pub Date : 2024-09-14 DOI:10.1016/j.carbon.2024.119638
{"title":"KSCN molten salt synthesis of hierarchical MoS2/NPC for rapid and durable sodium storage","authors":"","doi":"10.1016/j.carbon.2024.119638","DOIUrl":null,"url":null,"abstract":"<div><p>MoS<sub>2</sub> boasts high capacity but often encounters issues such as poor electrical conductivity, limited cycling stability due to volume expansion, and polysulfide shuttling when applied as the anode in sodium-ion batteries (SIBs). To this end researchers have developed MoS<sub>2</sub>/carbon composites, which enhance electronic conductivity, ion diffusion, and structural stability. Herein, we develop a new synthesis method using a KSCN molten salt to produce hierarchical MoS<sub>2</sub> on nitrogen and phosphorus co-doped carbon (NPC). The molten KSCN acts both as the sulfur source and the reaction medium, facilitating the creation of hierarchical MoS<sub>2</sub> structures with a high loading of 85.8 wt%. These structures optimize ion diffusion channels and enhance electrochemical reaction kinetics. Additionally, the NPC framework improves electron transport and reduces polysulfide shuttling. With its superior structural stability and accelerated electrode kinetics, MoS<sub>2</sub>/NPC exhibits an impressive rate capacity of 468 mAh g<sup>−1</sup> at 10 A g<sup>−1</sup> and maintains a long lifespan of 1300 cycles at 2 A g<sup>−1</sup>. Moreover, full cells equipped with a NaNi<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> cathode retain 98 % capacity retention after 400 cycles. This study presents a promising approach for fabricating advanced MoS<sub>2</sub>/carbon anodes with dedicate nanostructures for SIBs.</p></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324008571","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

MoS2 boasts high capacity but often encounters issues such as poor electrical conductivity, limited cycling stability due to volume expansion, and polysulfide shuttling when applied as the anode in sodium-ion batteries (SIBs). To this end researchers have developed MoS2/carbon composites, which enhance electronic conductivity, ion diffusion, and structural stability. Herein, we develop a new synthesis method using a KSCN molten salt to produce hierarchical MoS2 on nitrogen and phosphorus co-doped carbon (NPC). The molten KSCN acts both as the sulfur source and the reaction medium, facilitating the creation of hierarchical MoS2 structures with a high loading of 85.8 wt%. These structures optimize ion diffusion channels and enhance electrochemical reaction kinetics. Additionally, the NPC framework improves electron transport and reduces polysulfide shuttling. With its superior structural stability and accelerated electrode kinetics, MoS2/NPC exhibits an impressive rate capacity of 468 mAh g−1 at 10 A g−1 and maintains a long lifespan of 1300 cycles at 2 A g−1. Moreover, full cells equipped with a NaNi1/3Fe1/3Mn1/3O2 cathode retain 98 % capacity retention after 400 cycles. This study presents a promising approach for fabricating advanced MoS2/carbon anodes with dedicate nanostructures for SIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
KSCN 熔盐合成分层 MoS2/NPC,实现快速持久的钠储存
MoS2 具有高容量,但在用作钠离子电池(SIB)的阳极时,经常会遇到导电性差、体积膨胀导致循环稳定性有限以及多硫化物穿梭等问题。为此,研究人员开发了 MoS2/碳复合材料,以提高电子导电性、离子扩散性和结构稳定性。在此,我们开发了一种新的合成方法,利用 KSCN 熔盐在氮磷共掺杂碳 (NPC) 上生成分层 MoS2。熔融 KSCN 既是硫源,又是反应介质,有助于生成高负载量(85.8 wt%)的分层 MoS2 结构。这些结构优化了离子扩散通道,增强了电化学反应动力学。此外,NPC 框架还能改善电子传输,减少多硫化物穿梭。MoS2/NPC 具有出色的结构稳定性和加速的电极动力学特性,在 10 A g-1 的条件下可实现 468 mAh g-1 的惊人速率容量,在 2 A g-1 的条件下可保持 1300 个循环的长使用寿命。此外,配备 NaNi1/3Fe1/3Mn1/3O2 阴极的全电池在循环 400 次后仍能保持 98% 的容量。这项研究为制造具有专用纳米结构的 SIB 先进 MoS2/碳阳极提供了一种前景广阔的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
期刊最新文献
Editorial Board Outside Front Cover - Journal name, Cover image, Volume issue details, ISSN, Cover Date, Elsevier Logo and Society Logo if required Quantifying heterogeneous interface effect of Fe3O4(111)/C for enhanced low-frequency electromagnetic wave absorption Mechanically induced surface defect engineering in expanded graphite to boost the low-voltage intercalation kinetics for advanced potassium-ion batteries Revealing dynamic sulfidation of WC-WO3 heterogeneous nanoparticles: In situ formation of WS2 facilitates sulfur redox in Li–S battery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1