Tobias Alt , Igor Komnik , Laurence J. Ryan , Kenneth P. Clark
{"title":"Top speed sprinting: Thigh angular motion and eccentric hamstring strength in faster vs. slower sprinters","authors":"Tobias Alt , Igor Komnik , Laurence J. Ryan , Kenneth P. Clark","doi":"10.1016/j.humov.2024.103280","DOIUrl":null,"url":null,"abstract":"<div><p>Sprinting at maximum velocity requires fast angular motion of the thigh and effective hamstring function for optimum performance and injury prevention. In this cross-sectional investigation of 21 male sprinters, we acquired thigh angular kinematics while sprinting at top speed (range: 8.96–10.17 m/s), and then measured eccentric hamstring strength capacities using an isokinetic dynamometer during the same test session. In agreement with the hypotheses, thigh angular motion rates and the associated eccentric hamstring strength capacities were both significantly correlated with top speed (<em>r</em>-values: ∼0.5; <em>p</em> < 0.05). Additionally, when the participants were sorted by top speed, there were significant differences between the faster group and the slower group. Notably, on average the faster group showed faster thigh motion (angular acceleration: 10.3 kdeg/s<sup>2</sup>, 11 % greater than slower group) and higher eccentric hamstring strength capacities (peak moment: 2.26 Nm/kg, 14 % greater than slower group). This investigation indicates that fast thigh angular motion and eccentric hamstring strength are both important for sprint performance.</p></div>","PeriodicalId":55046,"journal":{"name":"Human Movement Science","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Movement Science","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167945724001052","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sprinting at maximum velocity requires fast angular motion of the thigh and effective hamstring function for optimum performance and injury prevention. In this cross-sectional investigation of 21 male sprinters, we acquired thigh angular kinematics while sprinting at top speed (range: 8.96–10.17 m/s), and then measured eccentric hamstring strength capacities using an isokinetic dynamometer during the same test session. In agreement with the hypotheses, thigh angular motion rates and the associated eccentric hamstring strength capacities were both significantly correlated with top speed (r-values: ∼0.5; p < 0.05). Additionally, when the participants were sorted by top speed, there were significant differences between the faster group and the slower group. Notably, on average the faster group showed faster thigh motion (angular acceleration: 10.3 kdeg/s2, 11 % greater than slower group) and higher eccentric hamstring strength capacities (peak moment: 2.26 Nm/kg, 14 % greater than slower group). This investigation indicates that fast thigh angular motion and eccentric hamstring strength are both important for sprint performance.
期刊介绍:
Human Movement Science provides a medium for publishing disciplinary and multidisciplinary studies on human movement. It brings together psychological, biomechanical and neurophysiological research on the control, organization and learning of human movement, including the perceptual support of movement. The overarching goal of the journal is to publish articles that help advance theoretical understanding of the control and organization of human movement, as well as changes therein as a function of development, learning and rehabilitation. The nature of the research reported may vary from fundamental theoretical or empirical studies to more applied studies in the fields of, for example, sport, dance and rehabilitation with the proviso that all studies have a distinct theoretical bearing. Also, reviews and meta-studies advancing the understanding of human movement are welcome.
These aims and scope imply that purely descriptive studies are not acceptable, while methodological articles are only acceptable if the methodology in question opens up new vistas in understanding the control and organization of human movement. The same holds for articles on exercise physiology, which in general are not supported, unless they speak to the control and organization of human movement. In general, it is required that the theoretical message of articles published in Human Movement Science is, to a certain extent, innovative and not dismissible as just "more of the same."