{"title":"Ex-RL: Experience-based reinforcement learning","authors":"","doi":"10.1016/j.ins.2024.121479","DOIUrl":null,"url":null,"abstract":"<div><p>Reinforcement learning (RL) has achieved significant success across various tasks. However, generalizing RL for similar tasks remains a challenge. This study leverages expertise from related tasks to introduce a novel algorithm, Ex-RL, for executing transfer learning in tabular RL. The methodology concentrates on abstracting previous experiences into descriptive data and utilizing such data for similar tasks. The research focuses on classic RL solutions for balancing and anti-balancing, which improve the sample efficiency of the learning process. Studies indicate that weak learners, such as Q-learning, require fewer learning episodes, resulting in a 50% improvement and a higher success rate in the learning process. An online virtual lab was developed to facilitate the execution of the experiments. The code is available at <span><span>Github</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524013938","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Reinforcement learning (RL) has achieved significant success across various tasks. However, generalizing RL for similar tasks remains a challenge. This study leverages expertise from related tasks to introduce a novel algorithm, Ex-RL, for executing transfer learning in tabular RL. The methodology concentrates on abstracting previous experiences into descriptive data and utilizing such data for similar tasks. The research focuses on classic RL solutions for balancing and anti-balancing, which improve the sample efficiency of the learning process. Studies indicate that weak learners, such as Q-learning, require fewer learning episodes, resulting in a 50% improvement and a higher success rate in the learning process. An online virtual lab was developed to facilitate the execution of the experiments. The code is available at Github.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.