Corrective and new research frontier of dual-phase -lag non-fourier heat conduction in functionally graded cylindrical materials with bi-directional property variations

Q1 Chemical Engineering International Journal of Thermofluids Pub Date : 2024-09-11 DOI:10.1016/j.ijft.2024.100861
P. Das , M.A. Islam , M.A. Hasib
{"title":"Corrective and new research frontier of dual-phase -lag non-fourier heat conduction in functionally graded cylindrical materials with bi-directional property variations","authors":"P. Das ,&nbsp;M.A. Islam ,&nbsp;M.A. Hasib","doi":"10.1016/j.ijft.2024.100861","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a novel and corrective analysis of Dual-Phase-Lag (DPL) non-fourier heat conduction in functionally graded cylindrical materials with bi-directional property variations. For general purposes, the 2-D DPL model was employed and solved in a polar coordinate system for an FGM cylinder whose material properties vary exponentially in the axial and radial directions. The proposed model's analytical and numerical solutions were obtained through the SOV method and implicit FDM with a non-uniform grid. Moreover, the effect of the inhomogeneity parameter in the Fourier, Cattaneo–Vernotte (C–V), and DPL models has been analyzed. The results indicate that the DPL model achieves temperature stability in less time when contrasted with the C–V model. In addition, the reduced inhomogeneity parameters result in quicker attainment of a steady temperature and the induction of higher temperatures. The thermal wave propagation in the DPL model is consistently greater than that in the C–V model. In addition, an increase in time lag for heat flux enhances thermal wave properties (amplitude, wavelength, propagation speed etc.); conversely, an increase in time lag for temperature gradient counteracts wave properties and augments heat release. Nevertheless, the present outcomes offer a straightforward multivariate analytical and numerical solution for a finite cylinder's non-Fourier heat conduction equation under diverse boundary conditions.</p></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"24 ","pages":"Article 100861"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666202724003021/pdfft?md5=a601c5ad4732a6d7611a924a3ef3c28c&pid=1-s2.0-S2666202724003021-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202724003021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel and corrective analysis of Dual-Phase-Lag (DPL) non-fourier heat conduction in functionally graded cylindrical materials with bi-directional property variations. For general purposes, the 2-D DPL model was employed and solved in a polar coordinate system for an FGM cylinder whose material properties vary exponentially in the axial and radial directions. The proposed model's analytical and numerical solutions were obtained through the SOV method and implicit FDM with a non-uniform grid. Moreover, the effect of the inhomogeneity parameter in the Fourier, Cattaneo–Vernotte (C–V), and DPL models has been analyzed. The results indicate that the DPL model achieves temperature stability in less time when contrasted with the C–V model. In addition, the reduced inhomogeneity parameters result in quicker attainment of a steady temperature and the induction of higher temperatures. The thermal wave propagation in the DPL model is consistently greater than that in the C–V model. In addition, an increase in time lag for heat flux enhances thermal wave properties (amplitude, wavelength, propagation speed etc.); conversely, an increase in time lag for temperature gradient counteracts wave properties and augments heat release. Nevertheless, the present outcomes offer a straightforward multivariate analytical and numerical solution for a finite cylinder's non-Fourier heat conduction equation under diverse boundary conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有双向性质变化的功能分级圆柱形材料中的双相-滞后非傅里叶热传导的修正与新研究前沿
本研究对具有双向属性变化的功能分级圆柱材料中的双相滞后(DPL)非傅里叶热传导进行了新颖的修正分析。一般而言,对于材料属性在轴向和径向呈指数变化的 FGM 圆柱体,采用二维 DPL 模型并在极坐标系中求解。通过 SOV 方法和非均匀网格的隐式 FDM,获得了所提模型的分析和数值解。此外,还分析了傅立叶、卡塔尼奥-弗诺特(C-V)和 DPL 模型中不均匀参数的影响。结果表明,与 C-V 模型相比,DPL 模型能在更短的时间内实现温度稳定性。此外,非均质参数的减少导致更快地达到稳定温度,并诱发更高的温度。DPL 模型中的热波传播始终大于 C-V 模型。此外,热通量时滞的增加会增强热波特性(振幅、波长、传播速度等);相反,温度梯度时滞的增加会抵消热波特性并增加热量释放。尽管如此,目前的成果为有限圆柱体在不同边界条件下的非傅里叶热传导方程提供了直接的多元分析和数值解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
期刊最新文献
Data-driven prediction and multi-objective optimization of pemfc performance using an ANN–GA hybrid model A technical note on solar thermal applications of semi-transparent liquid films Computational study of tetra hybrid nanofluid in micropolar fluid on shrinking/stretching needle: A dual solution study Numerical investigation of flow distribution and energy extraction in multi-fractured doublet Enhanced Geothermal Systems (EGS) Homotopy simulation of oscillatory powell–eyring nanofluid under rotating MHD Forces with Hall–ion slip and thermophoretic deposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1