Quantifying random collisions between particles inside and outside a circle

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-09-10 DOI:10.1016/j.physd.2024.134361
Xi Chen , Hui Wang , Jinqiao Duan
{"title":"Quantifying random collisions between particles inside and outside a circle","authors":"Xi Chen ,&nbsp;Hui Wang ,&nbsp;Jinqiao Duan","doi":"10.1016/j.physd.2024.134361","DOIUrl":null,"url":null,"abstract":"<div><p>Random collisions of particles occur in various biophysical and physical systems. Inspired by the binding of receptor and ligand on the cell membrane, we devised a method based on stochastic dynamical modeling to quantify the likelihood of two random particles colliding on a circle. We consider the dynamics of a receptor binding to a ligand on the cell membrane, where the receptor and ligand perform different motions and are thus modeled by stochastic differential equations with non-Gaussian noise. We use neural networks based on the Onsager–Machlup function to compute the probability <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> of an unbounded receptor diffusing to the cell membrane. Meanwhile, we compute the probability <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> of the extracellular ligand arriving at the cell membrane by solving the associated nonlocal Fokker–Planck equation. We can then calculate the most probable binding probability by combining <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. In this way, we conclude with some indication of how the receptors could distribute on the membrane, as well as where the ligand will most probably encounter the receptor, contributing to a better understanding of the cell’s response to external stimuli and communication with other cells.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924003117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Random collisions of particles occur in various biophysical and physical systems. Inspired by the binding of receptor and ligand on the cell membrane, we devised a method based on stochastic dynamical modeling to quantify the likelihood of two random particles colliding on a circle. We consider the dynamics of a receptor binding to a ligand on the cell membrane, where the receptor and ligand perform different motions and are thus modeled by stochastic differential equations with non-Gaussian noise. We use neural networks based on the Onsager–Machlup function to compute the probability P1 of an unbounded receptor diffusing to the cell membrane. Meanwhile, we compute the probability P2 of the extracellular ligand arriving at the cell membrane by solving the associated nonlocal Fokker–Planck equation. We can then calculate the most probable binding probability by combining P1 and P2. In this way, we conclude with some indication of how the receptors could distribute on the membrane, as well as where the ligand will most probably encounter the receptor, contributing to a better understanding of the cell’s response to external stimuli and communication with other cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量化圆内和圆外粒子之间的随机碰撞
粒子的随机碰撞发生在各种生物物理和物理系统中。受细胞膜上受体和配体结合的启发,我们设计了一种基于随机动力学建模的方法来量化两个随机粒子在圆上碰撞的可能性。我们考虑的是细胞膜上受体与配体结合的动态,其中受体和配体执行不同的运动,因此用具有非高斯噪声的随机微分方程建模。我们使用基于 Onsager-Machlup 函数的神经网络来计算无约束受体扩散到细胞膜的概率 P1。同时,我们通过求解相关的非局部福克-普朗克方程,计算细胞外配体到达细胞膜的概率 P2。然后,我们可以结合 P1 和 P2 计算出最可能的结合概率。通过这种方法,我们可以得出受体在膜上的分布情况,以及配体最有可能与受体相遇的位置,从而有助于更好地理解细胞对外部刺激的反应以及与其他细胞的交流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1