A quasi-3D SinZZ model-driven multi-field Chebyshev FEM for nonlinear vibration control in multilayer multiferroic composite plates

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL Thin-Walled Structures Pub Date : 2024-09-17 DOI:10.1016/j.tws.2024.112457
{"title":"A quasi-3D SinZZ model-driven multi-field Chebyshev FEM for nonlinear vibration control in multilayer multiferroic composite plates","authors":"","doi":"10.1016/j.tws.2024.112457","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an advanced numerical method for modeling and mitigating nonlinear vibrations in thin multilayered fiber-reinforced multiferroic composite plates, addressing complex multi-physical interactions. The proposed methodology leverages a multi-physical coupling Chebyshev finite element formulation, utilizing high-order shape functions derived from Chebyshev polynomials. By integrating the strengths of spectral element methods and Legendre spectral finite element methods, this approach effectively overcomes challenges such as shear locking and spurious zero energy modes while ensuring high convergence rates in multi-physical problems. A quasi-3D refined model, incorporating the Murakami zig-zag model and sinusoidal shear deformation theory, is employed to accurately capture the nonlinear Von Kármán strain–displacement relationship and the magneto-electro-elastic coupling in multilayer structures with thickness-dependent material properties. To suppress nonlinear vibrations, the study utilizes a closed-loop multiphysical Chebyshev finite element model for time-domain analysis of viscoelastically damped systems, employing the Golla–Hughes–McTavish model. The results underscore the significant influence of multiferroic properties and the strategic distribution of ferroelectric fibers within the substrate on the dynamic behavior of the plate. The numerical validation, supported by rigorous verification, demonstrates the robustness of the proposed method in effectively simulating and controlling multilayer fiber-reinforced multiferroic composite plates. Additionally, this research highlights the potential for significant vibration reduction through semi-active damping mechanisms, offering valuable insights for practical applications in industries where precision and stability are critical.</p></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026382312400898X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an advanced numerical method for modeling and mitigating nonlinear vibrations in thin multilayered fiber-reinforced multiferroic composite plates, addressing complex multi-physical interactions. The proposed methodology leverages a multi-physical coupling Chebyshev finite element formulation, utilizing high-order shape functions derived from Chebyshev polynomials. By integrating the strengths of spectral element methods and Legendre spectral finite element methods, this approach effectively overcomes challenges such as shear locking and spurious zero energy modes while ensuring high convergence rates in multi-physical problems. A quasi-3D refined model, incorporating the Murakami zig-zag model and sinusoidal shear deformation theory, is employed to accurately capture the nonlinear Von Kármán strain–displacement relationship and the magneto-electro-elastic coupling in multilayer structures with thickness-dependent material properties. To suppress nonlinear vibrations, the study utilizes a closed-loop multiphysical Chebyshev finite element model for time-domain analysis of viscoelastically damped systems, employing the Golla–Hughes–McTavish model. The results underscore the significant influence of multiferroic properties and the strategic distribution of ferroelectric fibers within the substrate on the dynamic behavior of the plate. The numerical validation, supported by rigorous verification, demonstrates the robustness of the proposed method in effectively simulating and controlling multilayer fiber-reinforced multiferroic composite plates. Additionally, this research highlights the potential for significant vibration reduction through semi-active damping mechanisms, offering valuable insights for practical applications in industries where precision and stability are critical.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于多层多铁氧体复合板非线性振动控制的准三维 SinZZ 模型驱动多场切比雪夫有限元模型
本文介绍了一种先进的数值方法,用于模拟和缓解薄型多层纤维增强多铁素体复合板的非线性振动,解决复杂的多物理相互作用问题。所提出的方法利用多物理耦合切比雪夫有限元公式,利用从切比雪夫多项式导出的高阶形状函数。通过整合谱元法和 Legendre 谱有限元法的优势,该方法有效克服了剪切锁定和杂散零能模式等难题,同时确保了多物理问题的高收敛率。准三维精炼模型结合了村上之字形模型和正弦剪切变形理论,可准确捕捉非线性冯卡尔曼应变-位移关系以及具有厚度相关材料特性的多层结构中的磁-电-弹性耦合。为抑制非线性振动,研究利用闭环多物理切比雪夫有限元模型,采用 Golla-Hughes-McTavish 模型对粘弹性阻尼系统进行时域分析。结果表明,多铁素体特性和基板内铁电纤维的战略分布对平板的动态行为有重大影响。在严格验证的支持下,数值验证证明了所提方法在有效模拟和控制多层纤维增强多铁电体复合板方面的稳健性。此外,这项研究还强调了通过半主动阻尼机制显著减少振动的潜力,为精度和稳定性至关重要的行业的实际应用提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Thin-Walled Structures
Thin-Walled Structures 工程技术-工程:土木
CiteScore
9.60
自引率
20.30%
发文量
801
审稿时长
66 days
期刊介绍: Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses. Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering. The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.
期刊最新文献
Shear performance prediction for corrugated steel web girders based on machine-learning algorithms Editorial Board An origami-wheeled robot with variable width and enhanced sand walking versatility Oscillating laser-arc hybrid additive manufacturing of aluminum alloy thin-wall based on synchronous wire-powder feeding Research on damage repair and high-velocity impact characteristics of thermoplastic composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1