{"title":"A quasi-3D SinZZ model-driven multi-field Chebyshev FEM for nonlinear vibration control in multilayer multiferroic composite plates","authors":"","doi":"10.1016/j.tws.2024.112457","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an advanced numerical method for modeling and mitigating nonlinear vibrations in thin multilayered fiber-reinforced multiferroic composite plates, addressing complex multi-physical interactions. The proposed methodology leverages a multi-physical coupling Chebyshev finite element formulation, utilizing high-order shape functions derived from Chebyshev polynomials. By integrating the strengths of spectral element methods and Legendre spectral finite element methods, this approach effectively overcomes challenges such as shear locking and spurious zero energy modes while ensuring high convergence rates in multi-physical problems. A quasi-3D refined model, incorporating the Murakami zig-zag model and sinusoidal shear deformation theory, is employed to accurately capture the nonlinear Von Kármán strain–displacement relationship and the magneto-electro-elastic coupling in multilayer structures with thickness-dependent material properties. To suppress nonlinear vibrations, the study utilizes a closed-loop multiphysical Chebyshev finite element model for time-domain analysis of viscoelastically damped systems, employing the Golla–Hughes–McTavish model. The results underscore the significant influence of multiferroic properties and the strategic distribution of ferroelectric fibers within the substrate on the dynamic behavior of the plate. The numerical validation, supported by rigorous verification, demonstrates the robustness of the proposed method in effectively simulating and controlling multilayer fiber-reinforced multiferroic composite plates. Additionally, this research highlights the potential for significant vibration reduction through semi-active damping mechanisms, offering valuable insights for practical applications in industries where precision and stability are critical.</p></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026382312400898X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an advanced numerical method for modeling and mitigating nonlinear vibrations in thin multilayered fiber-reinforced multiferroic composite plates, addressing complex multi-physical interactions. The proposed methodology leverages a multi-physical coupling Chebyshev finite element formulation, utilizing high-order shape functions derived from Chebyshev polynomials. By integrating the strengths of spectral element methods and Legendre spectral finite element methods, this approach effectively overcomes challenges such as shear locking and spurious zero energy modes while ensuring high convergence rates in multi-physical problems. A quasi-3D refined model, incorporating the Murakami zig-zag model and sinusoidal shear deformation theory, is employed to accurately capture the nonlinear Von Kármán strain–displacement relationship and the magneto-electro-elastic coupling in multilayer structures with thickness-dependent material properties. To suppress nonlinear vibrations, the study utilizes a closed-loop multiphysical Chebyshev finite element model for time-domain analysis of viscoelastically damped systems, employing the Golla–Hughes–McTavish model. The results underscore the significant influence of multiferroic properties and the strategic distribution of ferroelectric fibers within the substrate on the dynamic behavior of the plate. The numerical validation, supported by rigorous verification, demonstrates the robustness of the proposed method in effectively simulating and controlling multilayer fiber-reinforced multiferroic composite plates. Additionally, this research highlights the potential for significant vibration reduction through semi-active damping mechanisms, offering valuable insights for practical applications in industries where precision and stability are critical.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.