A measurement modified centered error entropy cubature Kalman filter for integrated INS/GNSS

IF 5.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Measurement Pub Date : 2024-09-13 DOI:10.1016/j.measurement.2024.115745
{"title":"A measurement modified centered error entropy cubature Kalman filter for integrated INS/GNSS","authors":"","doi":"10.1016/j.measurement.2024.115745","DOIUrl":null,"url":null,"abstract":"<div><p>Due to unpredictable environmental factors, the measurement noise in INS/GNSS integration can be affected by outliers or exhibit statistical uncertainty. A single adaptive or robust filter may not be suitable for all noise scenarios. To address this issue, a new approach called the measurement noise covariance matrix (MNCM) ’<strong><em>R</em></strong>’ modified centered error entropy cubature Kalman filter (RMCEECKF) is proposed in this study. In this method, the MNCM is adjusted based on the innovation sequence, and outliers are detected using the Mahalanobis distance. If outliers are identified, the CEE criterion with strong robustness is applied for the posterior update. Simulation results on INS/GNSS integration demonstrate that the RMCEECKF offers higher estimation accuracy compared to existing methods in scenarios involving outliers, uncertain noise covariance, and outliers under uncertain noise covariance. The inclusion of outlier detection also enhances the computational efficiency of RMCEECKF when compared to the CEECKF.</p></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224124016300","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to unpredictable environmental factors, the measurement noise in INS/GNSS integration can be affected by outliers or exhibit statistical uncertainty. A single adaptive or robust filter may not be suitable for all noise scenarios. To address this issue, a new approach called the measurement noise covariance matrix (MNCM) ’R’ modified centered error entropy cubature Kalman filter (RMCEECKF) is proposed in this study. In this method, the MNCM is adjusted based on the innovation sequence, and outliers are detected using the Mahalanobis distance. If outliers are identified, the CEE criterion with strong robustness is applied for the posterior update. Simulation results on INS/GNSS integration demonstrate that the RMCEECKF offers higher estimation accuracy compared to existing methods in scenarios involving outliers, uncertain noise covariance, and outliers under uncertain noise covariance. The inclusion of outlier detection also enhances the computational efficiency of RMCEECKF when compared to the CEECKF.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于综合 INS/GNSS 的测量修正中心误差熵立方卡尔曼滤波器
由于不可预测的环境因素,INS/GNSS 集成中的测量噪声可能会受到异常值的影响或表现出统计不确定性。单一的自适应或鲁棒性滤波器可能无法适用于所有噪声情况。为解决这一问题,本研究提出了一种名为测量噪声协方差矩阵(MNCM)'R'修正居中误差熵立方卡尔曼滤波器(RMCEECKF)的新方法。在这种方法中,MNCM 根据创新序列进行调整,并使用 Mahalanobis 距离检测异常值。如果发现异常值,则采用鲁棒性较强的 CEE 准则进行后验更新。INS/GNSS 集成的仿真结果表明,与现有方法相比,RMCEECKF 在涉及离群值、不确定噪声协方差和不确定噪声协方差下的离群值的情况下具有更高的估计精度。与 CEECKF 相比,RMCEECKF 加入了异常值检测功能,从而提高了计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Measurement
Measurement 工程技术-工程:综合
CiteScore
10.20
自引率
12.50%
发文量
1589
审稿时长
12.1 months
期刊介绍: Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.
期刊最新文献
Optical manipulation of magnetic microspheres Enables high-sensitivity Fiber-optic magnetic field sensors DPSM-based edge blurring suppression of ultrasonic measurement of contact state Wide-area film thickness measurement method of water-lubricated polymer bearing based on ultrasonic reflection coefficient phase A Pyrido[1,2-a]pyrazinium bromide derivative as a fluorescent indicator for visual and rapid detection of carbamate pesticides in water Novel method of rapid and accurate tree trunk location in pear orchard combining stereo vision and semantic segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1