{"title":"Stable decaphenylcyclopentasilane hole transport layers for double-stacked perovskite photovoltaic devices fabricated under ambient atmosphere","authors":"Iori Ono , Takeo Oku , Yuto Genko , Riku Okumura , Taiga Nasu , Shinichiro Mizuno , Tomoharu Tachikawa , Tomoya Hasegawa , Sakiko Fukunishi","doi":"10.1016/j.cinorg.2024.100066","DOIUrl":null,"url":null,"abstract":"<div><p>Stable decaphenylcyclopentasilane (DPPS) hole transport layers were developed for guanidinium-, formamidinium-, or ethylammonium-added double-stacked CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> perovskite photovoltaic devices without using 2,2′,7,7′-tetrakis (<em>N,N</em>-di-<em>p</em>-methoxyphenylamino)-9,9′-spirobifluorene, which is a typical hole transport layer. Stacking two types of perovskite compounds inserted within the DPPS layer enabled the fabrication of stable perovskite solar cells under ambient atmosphere at 190 °C, which reduced the trap density and improved the photovoltaic properties of the devices. As expected, the DPPS-inserted layers functioned as a stable hole transport layer for perovskite solar cells.</p></div>","PeriodicalId":100233,"journal":{"name":"Chemistry of Inorganic Materials","volume":"4 ","pages":"Article 100066"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S294974692400034X/pdfft?md5=d1f35286dcdd51180b2c9f515e10c5d3&pid=1-s2.0-S294974692400034X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Inorganic Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294974692400034X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Stable decaphenylcyclopentasilane (DPPS) hole transport layers were developed for guanidinium-, formamidinium-, or ethylammonium-added double-stacked CH3NH3PbI3 perovskite photovoltaic devices without using 2,2′,7,7′-tetrakis (N,N-di-p-methoxyphenylamino)-9,9′-spirobifluorene, which is a typical hole transport layer. Stacking two types of perovskite compounds inserted within the DPPS layer enabled the fabrication of stable perovskite solar cells under ambient atmosphere at 190 °C, which reduced the trap density and improved the photovoltaic properties of the devices. As expected, the DPPS-inserted layers functioned as a stable hole transport layer for perovskite solar cells.