Effects of ecological control line on habitat connectivity: A case study of Shenzhen, China

IF 7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Ecological Indicators Pub Date : 2024-09-16 DOI:10.1016/j.ecolind.2024.112583
{"title":"Effects of ecological control line on habitat connectivity: A case study of Shenzhen, China","authors":"","doi":"10.1016/j.ecolind.2024.112583","DOIUrl":null,"url":null,"abstract":"<div><p>Ecological control line (ECL) has become an important policy for enhancing ecological conservation and achieving sustainable urban development. Landscape connectivity of ecological network provides a method for exploring the effect of ECL policy on biodiversity conservation. This study used Shenzhen as an example to analyze the distribution of important habitats based on species occurrence points, environmental factors and artificial neural network methods. Four-phase ecological networks of focal species (<em>Ardea cinerea, Callosciurus erythraeus, Copsychus saularis, Egretta garzetta, Pycnonotus sinensis</em>) in 2000, 2010, 2015, and 2020 were constructed, and the effects and changes of ECL on habitat connectivity of species, geographical zone, and species zone scales were sequently analyzed using the difference-in-difference method. The results showed that: (1) Forty-one important habitats were identified, with a total area of 743 km<sup>2</sup>, and the average area of each habitat was 18.1 km<sup>2</sup>. The number of ecological corridors and the area of ecological pinch points in Shenzhen decreased in the first ten years but remained stable over the final ten years. (2) ECL delineation can promote habitat connectivity of regional species and with the passage of time, this promoting effect increases. The protective effect in the high habitat quality zone was greater than that in the low habitat quality zone. (3) City managers can develop habitat connectivity conservation schemes for different species according to the five habitat quality zones: high, mid-high, middle, mid-low, and low. This study proposes a method to assess the effectiveness of the existing ecological control line, and provide a scientific basis for formulating, adusting and optimizing ecological management.</p></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1470160X24010409/pdfft?md5=c5a97e7c98e567e0563de0da49a286b3&pid=1-s2.0-S1470160X24010409-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Indicators","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1470160X24010409","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Ecological control line (ECL) has become an important policy for enhancing ecological conservation and achieving sustainable urban development. Landscape connectivity of ecological network provides a method for exploring the effect of ECL policy on biodiversity conservation. This study used Shenzhen as an example to analyze the distribution of important habitats based on species occurrence points, environmental factors and artificial neural network methods. Four-phase ecological networks of focal species (Ardea cinerea, Callosciurus erythraeus, Copsychus saularis, Egretta garzetta, Pycnonotus sinensis) in 2000, 2010, 2015, and 2020 were constructed, and the effects and changes of ECL on habitat connectivity of species, geographical zone, and species zone scales were sequently analyzed using the difference-in-difference method. The results showed that: (1) Forty-one important habitats were identified, with a total area of 743 km2, and the average area of each habitat was 18.1 km2. The number of ecological corridors and the area of ecological pinch points in Shenzhen decreased in the first ten years but remained stable over the final ten years. (2) ECL delineation can promote habitat connectivity of regional species and with the passage of time, this promoting effect increases. The protective effect in the high habitat quality zone was greater than that in the low habitat quality zone. (3) City managers can develop habitat connectivity conservation schemes for different species according to the five habitat quality zones: high, mid-high, middle, mid-low, and low. This study proposes a method to assess the effectiveness of the existing ecological control line, and provide a scientific basis for formulating, adusting and optimizing ecological management.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生态控制线(ECL)已成为加强生态保护和实现城市可持续发展的一项重要政策。生态网络的景观连通性为探讨生态控制线政策对生物多样性保护的影响提供了一种方法。本研究以深圳为例,基于物种出现点、环境因子和人工神经网络方法分析了重要生境的分布。构建了2000年、2010年、2015年和2020年重点物种(红嘴鸥、红鹤、白鹭、中华白鹭)的四阶段生态网络,并利用差分法依次分析了ECL对物种尺度、地理区域尺度和物种区域尺度栖息地连通性的影响和变化。结果表明(1)确定了 41 个重要生境,总面积为 743 平方公里,平均每个生境面积为 18.1 平方公里。深圳的生态廊道数量和生态夹点面积在前十年有所减少,但在最后十年保持稳定。(2) 生态廊道的划定可以促进区域物种的栖息地连通性,随着时间的推移,这种促进作用会增强。高生境质量区的保护作用大于低生境质量区。(3) 城市管理者可根据高、中高、中、中低和低五个生境质量区制定不同物种的生境连通性保护方案。本研究提出了评估现有生态控制线有效性的方法,为制定、调整和优化生态管理提供了科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecological Indicators
Ecological Indicators 环境科学-环境科学
CiteScore
11.80
自引率
8.70%
发文量
1163
审稿时长
78 days
期刊介绍: The ultimate aim of Ecological Indicators is to integrate the monitoring and assessment of ecological and environmental indicators with management practices. The journal provides a forum for the discussion of the applied scientific development and review of traditional indicator approaches as well as for theoretical, modelling and quantitative applications such as index development. Research into the following areas will be published. • All aspects of ecological and environmental indicators and indices. • New indicators, and new approaches and methods for indicator development, testing and use. • Development and modelling of indices, e.g. application of indicator suites across multiple scales and resources. • Analysis and research of resource, system- and scale-specific indicators. • Methods for integration of social and other valuation metrics for the production of scientifically rigorous and politically-relevant assessments using indicator-based monitoring and assessment programs. • How research indicators can be transformed into direct application for management purposes. • Broader assessment objectives and methods, e.g. biodiversity, biological integrity, and sustainability, through the use of indicators. • Resource-specific indicators such as landscape, agroecosystems, forests, wetlands, etc.
期刊最新文献
Exploring the drivers and dynamics of urban waters: A case study of Wuhan from 1980 to 2060 Restoring land–water transition areas to stimulate food web development is mediated by the hydrological connectivity Accumulation characteristics of heavy metals in three wild rice species and adaptation of root morphology and anatomical structure to native soil heavy metals in Yunnan Marine biodiversity impact pathways for offshore wind farm decommissioning: Implications for Life Cycle impact assessment development Changes in landscape ecological risk in the Beijing-Tianjin Sandstorm source control project area from a spatiotemporal perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1