The effect of ion implantation and annealing temperatures on the migration behavior of ruthenium in glassy carbon

IF 1.4 3区 物理与天体物理 Q3 INSTRUMENTS & INSTRUMENTATION Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms Pub Date : 2024-09-18 DOI:10.1016/j.nimb.2024.165533
T.A.O. Jafer , O.S. Odutemowo , H.A.A. Abdelbagi , T.T. Thabethe , J.B. Malherbe
{"title":"The effect of ion implantation and annealing temperatures on the migration behavior of ruthenium in glassy carbon","authors":"T.A.O. Jafer ,&nbsp;O.S. Odutemowo ,&nbsp;H.A.A. Abdelbagi ,&nbsp;T.T. Thabethe ,&nbsp;J.B. Malherbe","doi":"10.1016/j.nimb.2024.165533","DOIUrl":null,"url":null,"abstract":"<div><p>Nuclear waste storage materials are inevitable in nuclear industry for preventing the release of radioactive waste products. Glassy carbon has been considered being beneficial to be used in the dry cask needed for nuclear waste storage. Thus, we studied the migration of ruthenium implanted in glassy carbon upon annealing. Our investigations show that ruthenium implantation caused defects in the glassy carbon structure, with more defects observed in the room temperature as-implanted samples compared to those implanted at 200 °C. Annealing the as-implanted samples from 500 to 800 °C showed no significant change in the ruthenium depth profiles, indicating the non-diffusivity of ruthenium in glassy carbon at these temperatures. However, annealing at higher temperatures (from 900 and 1300 °C) resulted in an increase in the maximum depth profile peaks, accompanied by a shift towards the surface, and a decrease in the full-width at half-maximum. These changes indicate the aggregation of ruthenium atoms in the near-surface region. Additionally, more ruthenium aggregation was observed in room temperature implanted samples compared to those implanted at 200 °C. This difference is attributed to the higher concentration of defects in room temperature implanted samples, which promotes ruthenium aggregation. Moreover, the migration and aggregation of ruthenium in the near-surface region contributed to an increase in the surface roughness of the glassy carbon.</p></div>","PeriodicalId":19380,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms","volume":"557 ","pages":"Article 165533"},"PeriodicalIF":1.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168583X24003033/pdfft?md5=1ad7044e69c10d103f8a6adca369df21&pid=1-s2.0-S0168583X24003033-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168583X24003033","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Nuclear waste storage materials are inevitable in nuclear industry for preventing the release of radioactive waste products. Glassy carbon has been considered being beneficial to be used in the dry cask needed for nuclear waste storage. Thus, we studied the migration of ruthenium implanted in glassy carbon upon annealing. Our investigations show that ruthenium implantation caused defects in the glassy carbon structure, with more defects observed in the room temperature as-implanted samples compared to those implanted at 200 °C. Annealing the as-implanted samples from 500 to 800 °C showed no significant change in the ruthenium depth profiles, indicating the non-diffusivity of ruthenium in glassy carbon at these temperatures. However, annealing at higher temperatures (from 900 and 1300 °C) resulted in an increase in the maximum depth profile peaks, accompanied by a shift towards the surface, and a decrease in the full-width at half-maximum. These changes indicate the aggregation of ruthenium atoms in the near-surface region. Additionally, more ruthenium aggregation was observed in room temperature implanted samples compared to those implanted at 200 °C. This difference is attributed to the higher concentration of defects in room temperature implanted samples, which promotes ruthenium aggregation. Moreover, the migration and aggregation of ruthenium in the near-surface region contributed to an increase in the surface roughness of the glassy carbon.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离子注入和退火温度对玻璃碳中钌迁移行为的影响
核废料贮存材料是核工业防止放射性废品泄漏不可或缺的材料。玻璃碳被认为有利于用于核废料储存所需的干桶。因此,我们研究了植入玻璃碳中的钌在退火时的迁移。我们的研究表明,钌的植入会导致玻璃碳结构出现缺陷,与 200 °C 下植入的样品相比,室温下植入的样品缺陷更多。在 500 ℃ 至 800 ℃ 退火时,钌深度剖面没有明显变化,这表明在这些温度下钌在玻璃碳中没有扩散性。然而,在更高温度下(900 和 1300 °C)退火会导致最大深度剖面峰值增加,同时向表面移动,半最大全宽减小。这些变化表明钌原子在近表面区域聚集。此外,与在 200 °C 下植入的样品相比,在室温下植入的样品中观察到更多的钌聚集。这种差异是由于室温植入样品中的缺陷浓度较高,从而促进了钌的聚集。此外,钌在近表面区域的迁移和聚集也增加了玻璃碳的表面粗糙度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
7.70%
发文量
231
审稿时长
1.9 months
期刊介绍: Section B of Nuclear Instruments and Methods in Physics Research covers all aspects of the interaction of energetic beams with atoms, molecules and aggregate forms of matter. This includes ion beam analysis and ion beam modification of materials as well as basic data of importance for these studies. Topics of general interest include: atomic collisions in solids, particle channelling, all aspects of collision cascades, the modification of materials by energetic beams, ion implantation, irradiation - induced changes in materials, the physics and chemistry of beam interactions and the analysis of materials by all forms of energetic radiation. Modification by ion, laser and electron beams for the study of electronic materials, metals, ceramics, insulators, polymers and other important and new materials systems are included. Related studies, such as the application of ion beam analysis to biological, archaeological and geological samples as well as applications to solve problems in planetary science are also welcome. Energetic beams of interest include atomic and molecular ions, neutrons, positrons and muons, plasmas directed at surfaces, electron and photon beams, including laser treated surfaces and studies of solids by photon radiation from rotating anodes, synchrotrons, etc. In addition, the interaction between various forms of radiation and radiation-induced deposition processes are relevant.
期刊最新文献
Influence of cathode materials on BeO currents in cosmogenic 10Be measurements using a SNICS ion source and accelerator mass spectrometry Studying of radiation attenuation and interaction parameters of some materials used in dental applications Effects of 100 MeV proton irradiation on the performance of P3HT-based perovskite solar cells Pt/TiO2 nanoparticles synthesized via gamma irradiation to improve photocatalytic degradation of methyl orange in visible light Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1