{"title":"Free vibration of doubly-curved panels reinforced by carbon nanotubes: New analytic solutions under non-Lévy-type boundary conditions","authors":"","doi":"10.1016/j.apm.2024.115701","DOIUrl":null,"url":null,"abstract":"<div><p>Existing analytic solutions for the free vibration of functionally graded carbon nanotube reinforced doubly-curved panels primarily address the cases with two parallel simply supported boundaries, known as Lévy-type boundary conditions (BCs). However, doubly-curved panels with non-Lévy-type BCs are more commonly encountered in practical engineering applications, yet their analytic solutions are rarely available due to significant mathematical challenges. This gap motivates us to develop new analytic free vibration solutions under these more complex BCs. The nanocomposites’ material properties are first computed according to the rule of mixture. The Hamiltonian-system governing equation for the free vibration of doubly-curved panels is then formulated from the Donnell-Mushtari theory, and is solved by adopting the analytic symplectic superposition method. The obtained analytic solutions are derived without requiring predefined solution forms, and have been thoroughly validated by comparison with the results from the finite element method. By utilizing the accurate analytic solutions, the effects of aspect ratios, BCs, types of CNT distributions, and volume fractions of CNT on the free vibration behaviors are further analyzed. The present solution procedure and the resulting analytic solutions are expected to be useful for dynamic modeling of composite shell panels, supporting both future research and practical applications.</p></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Modelling","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0307904X24004542","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Existing analytic solutions for the free vibration of functionally graded carbon nanotube reinforced doubly-curved panels primarily address the cases with two parallel simply supported boundaries, known as Lévy-type boundary conditions (BCs). However, doubly-curved panels with non-Lévy-type BCs are more commonly encountered in practical engineering applications, yet their analytic solutions are rarely available due to significant mathematical challenges. This gap motivates us to develop new analytic free vibration solutions under these more complex BCs. The nanocomposites’ material properties are first computed according to the rule of mixture. The Hamiltonian-system governing equation for the free vibration of doubly-curved panels is then formulated from the Donnell-Mushtari theory, and is solved by adopting the analytic symplectic superposition method. The obtained analytic solutions are derived without requiring predefined solution forms, and have been thoroughly validated by comparison with the results from the finite element method. By utilizing the accurate analytic solutions, the effects of aspect ratios, BCs, types of CNT distributions, and volume fractions of CNT on the free vibration behaviors are further analyzed. The present solution procedure and the resulting analytic solutions are expected to be useful for dynamic modeling of composite shell panels, supporting both future research and practical applications.
期刊介绍:
Applied Mathematical Modelling focuses on research related to the mathematical modelling of engineering and environmental processes, manufacturing, and industrial systems. A significant emerging area of research activity involves multiphysics processes, and contributions in this area are particularly encouraged.
This influential publication covers a wide spectrum of subjects including heat transfer, fluid mechanics, CFD, and transport phenomena; solid mechanics and mechanics of metals; electromagnets and MHD; reliability modelling and system optimization; finite volume, finite element, and boundary element procedures; modelling of inventory, industrial, manufacturing and logistics systems for viable decision making; civil engineering systems and structures; mineral and energy resources; relevant software engineering issues associated with CAD and CAE; and materials and metallurgical engineering.
Applied Mathematical Modelling is primarily interested in papers developing increased insights into real-world problems through novel mathematical modelling, novel applications or a combination of these. Papers employing existing numerical techniques must demonstrate sufficient novelty in the solution of practical problems. Papers on fuzzy logic in decision-making or purely financial mathematics are normally not considered. Research on fractional differential equations, bifurcation, and numerical methods needs to include practical examples. Population dynamics must solve realistic scenarios. Papers in the area of logistics and business modelling should demonstrate meaningful managerial insight. Submissions with no real-world application will not be considered.