Performance of nine maize phenology models in China under historical climate change conditions

IF 5.6 1区 农林科学 Q1 AGRONOMY Agricultural and Forest Meteorology Pub Date : 2024-09-18 DOI:10.1016/j.agrformet.2024.110234
{"title":"Performance of nine maize phenology models in China under historical climate change conditions","authors":"","doi":"10.1016/j.agrformet.2024.110234","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate and unbiased simulation of crop phenology under various climate conditions is a necessary feature of phenology models. Nine models were evaluated for simulating the vegetative growth period (VGP) and the reproductive growth period (RGP) of maize (<em>Zea mays</em> L.) under historical climate variation. Seven models were based on a constant thermal/photothermal assumption (MAIS, SIMCOY, EPIC, MCWLA, WOFOST, Beta, CERES), and two models were based on a non-constant thermal/photothermal assumption (coupling response and adaptation model, RAM; average number of growing days, NGD). Phenology observations from 150 agrometeorological observation sites across China (1981–2021) were collected to evaluate model performance. Results showed that: (1) Most models simulated flowering and maturity dates well. Average RMSE of VGP was lower than that of RGP. Generally, models based on non-constant thermal/photothermal assumptions had lower RMSE than models based on constant thermal/photothermal assumptions; (2) Models having a fairly high development rate when temperature was slightly higher than base temperature (RAM, Beta, CERES, NGD, MAIS) had the lowest RMSE during RGP; (3) Simulations by some models had systematic biases. First, during VGP, standard deviations of flowering date simulations obtained from models with flexible temperature response curves across sites and years (EPIC, MCWLA, WOFOST, Beta, CERES, RAM) increased more slowly than the standard deviations of observations, while those of other models increased faster. Second, during RGP, unlike RMSE values from other models, those RMSE values obtained from RAM and NGD showed no significant correlation with the average growth period temperature. Our results suggest the importance of further investigating the impact of low temperatures on development rate during RGP in order to reduce systematic bias of models when applied under climate change conditions. Research efforts should be devoted to developing models that have flexible phenology response to temperature curves across sites and years.</p></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168192324003472","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate and unbiased simulation of crop phenology under various climate conditions is a necessary feature of phenology models. Nine models were evaluated for simulating the vegetative growth period (VGP) and the reproductive growth period (RGP) of maize (Zea mays L.) under historical climate variation. Seven models were based on a constant thermal/photothermal assumption (MAIS, SIMCOY, EPIC, MCWLA, WOFOST, Beta, CERES), and two models were based on a non-constant thermal/photothermal assumption (coupling response and adaptation model, RAM; average number of growing days, NGD). Phenology observations from 150 agrometeorological observation sites across China (1981–2021) were collected to evaluate model performance. Results showed that: (1) Most models simulated flowering and maturity dates well. Average RMSE of VGP was lower than that of RGP. Generally, models based on non-constant thermal/photothermal assumptions had lower RMSE than models based on constant thermal/photothermal assumptions; (2) Models having a fairly high development rate when temperature was slightly higher than base temperature (RAM, Beta, CERES, NGD, MAIS) had the lowest RMSE during RGP; (3) Simulations by some models had systematic biases. First, during VGP, standard deviations of flowering date simulations obtained from models with flexible temperature response curves across sites and years (EPIC, MCWLA, WOFOST, Beta, CERES, RAM) increased more slowly than the standard deviations of observations, while those of other models increased faster. Second, during RGP, unlike RMSE values from other models, those RMSE values obtained from RAM and NGD showed no significant correlation with the average growth period temperature. Our results suggest the importance of further investigating the impact of low temperatures on development rate during RGP in order to reduce systematic bias of models when applied under climate change conditions. Research efforts should be devoted to developing models that have flexible phenology response to temperature curves across sites and years.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
9.70%
发文量
415
审稿时长
69 days
期刊介绍: Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published. Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.
期刊最新文献
Performance of nine maize phenology models in China under historical climate change conditions Energy balance closure at FLUXNET sites revisited Minor carbon sequestration under nitrogen deposition due to downregulated nitrogen uptake and use efficiency Forecasting dead fuel moisture content below forest canopies – A seven-day forecasting system Soil moisture and precipitation dominate the response and recovery times of ecosystems from different types of flash drought in the Yangtze River Basin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1