Xuekai Li , Wei Wang , Yihong Wu , Donghu Zhou , Huijun Kang , Enyu Guo , Jiehua Li , Zongning Chen , Yanjin Xu , Tongmin Wang
{"title":"Ultrasonic field-assisted metal additive manufacturing (U-FAAM): Mechanisms, research and future directions","authors":"Xuekai Li , Wei Wang , Yihong Wu , Donghu Zhou , Huijun Kang , Enyu Guo , Jiehua Li , Zongning Chen , Yanjin Xu , Tongmin Wang","doi":"10.1016/j.ultsonch.2024.107070","DOIUrl":null,"url":null,"abstract":"<div><p>Metal additive manufacturing (AM) is a disruptive technology that provides unprecedented design freedom and manufacturing flexibility for the forming of complex components. Despite its unparalleled advantages over traditional manufacturing methods, the existence of fatal issues still seriously hinders its large-scale industrial application. Against this backdrop, U-FAAM is emerging as a focus, integrating ultrasonic energy into conventional metal AM processes to harness distinctive advantages. This work offers an up-to-date, specialized review of U-FAAM, articulating the integrated modes, mechanisms, pivotal research achievements, and future development trends in a systematic manner. By synthesizing existing research, it highlights future directions in further optimizing process parameters, expanding material applicability, etc., to advance the industrial application and development of U-FAAM technology.</p></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"111 ","pages":"Article 107070"},"PeriodicalIF":8.7000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350417724003183/pdfft?md5=6b031774eb5959f95efef587d9ede212&pid=1-s2.0-S1350417724003183-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417724003183","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Metal additive manufacturing (AM) is a disruptive technology that provides unprecedented design freedom and manufacturing flexibility for the forming of complex components. Despite its unparalleled advantages over traditional manufacturing methods, the existence of fatal issues still seriously hinders its large-scale industrial application. Against this backdrop, U-FAAM is emerging as a focus, integrating ultrasonic energy into conventional metal AM processes to harness distinctive advantages. This work offers an up-to-date, specialized review of U-FAAM, articulating the integrated modes, mechanisms, pivotal research achievements, and future development trends in a systematic manner. By synthesizing existing research, it highlights future directions in further optimizing process parameters, expanding material applicability, etc., to advance the industrial application and development of U-FAAM technology.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.