Investigation of liquor microstructure (ethanol-water clusters): Molecular dynamics simulation and density functional theory

IF 2.7 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of molecular graphics & modelling Pub Date : 2024-09-12 DOI:10.1016/j.jmgm.2024.108864
Xinjun Hu , Jinlong Yu , Maolin Jiang , Jianping Tian , Manjiao Chen , Dan Huang
{"title":"Investigation of liquor microstructure (ethanol-water clusters): Molecular dynamics simulation and density functional theory","authors":"Xinjun Hu ,&nbsp;Jinlong Yu ,&nbsp;Maolin Jiang ,&nbsp;Jianping Tian ,&nbsp;Manjiao Chen ,&nbsp;Dan Huang","doi":"10.1016/j.jmgm.2024.108864","DOIUrl":null,"url":null,"abstract":"<div><p>Ethanol and water are the primary components of liquor. In this study, molecular dynamics (MD) simulations and density functional theory (DFT) were used to model ethanol-water clusters and infer possible structures of ethanol-water solutions. Nuclear magnetic resonance (NMR) and density of states analysis were employed to confirm the existence of clusters and further describe their properties. By comparing binding energies and calculating coordination numbers, we found that the ethanol-water solution with a molecular ratio of 1:2 forms three stable clusters. Under ideal conditions, the cluster ratio is approximately 1:1:6. Generally, the clusters undergo continuous splitting and recombination.</p></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"133 ","pages":"Article 108864"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326324001645","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Ethanol and water are the primary components of liquor. In this study, molecular dynamics (MD) simulations and density functional theory (DFT) were used to model ethanol-water clusters and infer possible structures of ethanol-water solutions. Nuclear magnetic resonance (NMR) and density of states analysis were employed to confirm the existence of clusters and further describe their properties. By comparing binding energies and calculating coordination numbers, we found that the ethanol-water solution with a molecular ratio of 1:2 forms three stable clusters. Under ideal conditions, the cluster ratio is approximately 1:1:6. Generally, the clusters undergo continuous splitting and recombination.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
酒液微观结构(乙醇-水团)研究:分子动力学模拟和密度泛函理论
乙醇和水是白酒的主要成分。本研究采用分子动力学(MD)模拟和密度泛函理论(DFT)建立乙醇-水团簇模型,并推断乙醇-水溶液的可能结构。核磁共振(NMR)和态密度分析被用来确认团簇的存在并进一步描述其性质。通过比较结合能和计算配位数,我们发现分子比为 1:2 的乙醇-水溶液形成了三个稳定的簇。在理想条件下,簇的比例约为 1:1:6。一般情况下,簇会不断发生分裂和重组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of molecular graphics & modelling
Journal of molecular graphics & modelling 生物-计算机:跨学科应用
CiteScore
5.50
自引率
6.90%
发文量
216
审稿时长
35 days
期刊介绍: The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design. As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.
期刊最新文献
Dispersion-corrected DFT calculations and dynamic molecular simulations to investigate conformational stability of Lidocaine towards β-CD and HP-β-CD. Recent advancements in mechanical properties of graphene-enhanced polymer nanocomposites: Progress, challenges, and pathways forward. Estimating AChE inhibitors from MCE database by machine learning and atomistic calculations. Effects of carbon nanotube and alumina doping on the properties of para-aramids: A DFT and molecular dynamics study. Exploring the interaction between Fe3+ and REGLE motif of the high-affinity iron permease (Ftr1): An in silico approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1