Sevasti Zervou , Debra J. McAndrew , Hannah A. Lake , Elina Kuznecova , Christopher Preece , Benjamin Davies , Stefan Neubauer , Craig A. Lygate
{"title":"Cardiac function and energetics in mice with combined genetic augmentation of creatine and creatine kinase activity","authors":"Sevasti Zervou , Debra J. McAndrew , Hannah A. Lake , Elina Kuznecova , Christopher Preece , Benjamin Davies , Stefan Neubauer , Craig A. Lygate","doi":"10.1016/j.yjmcc.2024.09.007","DOIUrl":null,"url":null,"abstract":"<div><p>Improving energy provision in the failing heart by augmenting the creatine kinase (CK) system is a desirable therapeutic target. However, over-expression of the creatine transporter (CrT-OE) has shown that very high creatine levels result in cardiac hypertrophy and dysfunction. We hypothesise this is due to insufficient endogenous CK activity to maintain thermodynamically favourable metabolite ratios. If correct, then double transgenic mice (dTg) overexpressing both CrT and the muscle isoform of CK (CKM-OE) would rescue the adverse phenotype. In Study 1, overexpressing lines were crossed and cardiac function assessed by invasive haemodynamics and echocardiography. This demonstrated that CKM-OE was safe, but too few hearts had creatine in the toxic range. In Study 2, a novel CrT-OE line was generated with higher, homogeneous, creatine levels and phenotyped as before. Myocardial creatine was 4-fold higher in CrT-OE and dTg hearts compared to wildtype and was associated with hypertrophy and contractile dysfunction. The inability of dTg hearts to rescue this phenotype was attributed to downregulation of CK activity, as occurs in the failing heart. Nevertheless, combining both studies in a linear regression analysis suggests a modest positive effect of CKM over a range of creatine concentrations. In conclusion, we confirm that moderate elevation of creatine is well tolerated, but very high levels are detrimental. Correlation analysis lends support to the theory that this may be a consequence of limited CK activity. Future studies should focus on preventing CKM downregulation to unlock the potential synergy of augmenting both creatine and CK in the heart.</p></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"196 ","pages":"Pages 105-114"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S002228282400155X/pdfft?md5=075c48c34f5868de40e2c10bda8d51e2&pid=1-s2.0-S002228282400155X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular and cellular cardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002228282400155X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Improving energy provision in the failing heart by augmenting the creatine kinase (CK) system is a desirable therapeutic target. However, over-expression of the creatine transporter (CrT-OE) has shown that very high creatine levels result in cardiac hypertrophy and dysfunction. We hypothesise this is due to insufficient endogenous CK activity to maintain thermodynamically favourable metabolite ratios. If correct, then double transgenic mice (dTg) overexpressing both CrT and the muscle isoform of CK (CKM-OE) would rescue the adverse phenotype. In Study 1, overexpressing lines were crossed and cardiac function assessed by invasive haemodynamics and echocardiography. This demonstrated that CKM-OE was safe, but too few hearts had creatine in the toxic range. In Study 2, a novel CrT-OE line was generated with higher, homogeneous, creatine levels and phenotyped as before. Myocardial creatine was 4-fold higher in CrT-OE and dTg hearts compared to wildtype and was associated with hypertrophy and contractile dysfunction. The inability of dTg hearts to rescue this phenotype was attributed to downregulation of CK activity, as occurs in the failing heart. Nevertheless, combining both studies in a linear regression analysis suggests a modest positive effect of CKM over a range of creatine concentrations. In conclusion, we confirm that moderate elevation of creatine is well tolerated, but very high levels are detrimental. Correlation analysis lends support to the theory that this may be a consequence of limited CK activity. Future studies should focus on preventing CKM downregulation to unlock the potential synergy of augmenting both creatine and CK in the heart.
期刊介绍:
The Journal of Molecular and Cellular Cardiology publishes work advancing knowledge of the mechanisms responsible for both normal and diseased cardiovascular function. To this end papers are published in all relevant areas. These include (but are not limited to): structural biology; genetics; proteomics; morphology; stem cells; molecular biology; metabolism; biophysics; bioengineering; computational modeling and systems analysis; electrophysiology; pharmacology and physiology. Papers are encouraged with both basic and translational approaches. The journal is directed not only to basic scientists but also to clinical cardiologists who wish to follow the rapidly advancing frontiers of basic knowledge of the heart and circulation.