Sathyapal R. Churipard , Adrian Alejandro Rodriguez Pinos , Sundaramurthy Vedachalam , Maliheh Heravi , Ajay K. Dalai , Saumitra Saxena , Bassam Dally
{"title":"Polypropylene to transportation fuel grade hydrocarbons over γ-alumina catalyst","authors":"Sathyapal R. Churipard , Adrian Alejandro Rodriguez Pinos , Sundaramurthy Vedachalam , Maliheh Heravi , Ajay K. Dalai , Saumitra Saxena , Bassam Dally","doi":"10.1016/j.clce.2024.100124","DOIUrl":null,"url":null,"abstract":"<div><p>Catalytic upgrading of plastics to valuable fuels and chemicals is an attractive route to valorize waste plastics. Herein, catalytic pyrolysis of polypropylene was performed over γ-Al<sub>2</sub>O<sub>3</sub> as a heterogeneous catalyst to produce fuel-grade hydrocarbons. The use of an inexpensive γ-Al<sub>2</sub>O<sub>3</sub> catalyst and mild reaction conditions led to high liquid yield selectively in gasoline-range hydrocarbons which stands out from most of the work reported in the literature for polypropylene pyrolysis. The reaction conditions of pyrolysis were optimized by the Box-Behnken Design approach utilizing the response surface methodology. The highest liquid yield of 88.1 wt.% was obtained at 470 °C temperature, with 2 wt.% of catalysts and 5 h reaction time. The amount of solid carbon was insignificant (0.7 wt.%) and the gas yield was 11.2 wt.%. The γ-Al<sub>2</sub>O<sub>3</sub> showed high efficiency and stability for converting polypropylene to liquid fuels. The catalyst was highly stable, reusable, and showed similar catalytic activity for 3 recycles. These features and the highly selective conversion of PP to gasoline range fuels are crucial for large-scale applications. The GC–MS analysis revealed that the liquid fuel produced mostly contained C8 to C15 hydrocarbons encompassing mostly gasoline and a small fraction of diesel fuel and higher hydrocarbons. The GC–MS data was also supported by SimDist analysis, which exhibited the boiling point ranging from 100 °C to 260 °C for the liquid fuel product. The reaction temperature and time had a significant impact on the liquid yield. The higher temperature favored the formation of the gaseous product of C1-C3 hydrocarbons. The NMR analysis showed that the liquid products mostly contained the highest amount of paraffins followed by olefins and a small fraction of aromatics. The presence of mild acidity in the γ-Al<sub>2</sub>O<sub>3</sub> catalyst and optimum reaction condition provides favorable conditions to produce the highest yield of transportation fuel grade hydrocarbons without over-cracking into gases.</p></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"10 ","pages":"Article 100124"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772782324000093/pdfft?md5=a381aa9a8bd76006310d6000c12790a1&pid=1-s2.0-S2772782324000093-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772782324000093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Catalytic upgrading of plastics to valuable fuels and chemicals is an attractive route to valorize waste plastics. Herein, catalytic pyrolysis of polypropylene was performed over γ-Al2O3 as a heterogeneous catalyst to produce fuel-grade hydrocarbons. The use of an inexpensive γ-Al2O3 catalyst and mild reaction conditions led to high liquid yield selectively in gasoline-range hydrocarbons which stands out from most of the work reported in the literature for polypropylene pyrolysis. The reaction conditions of pyrolysis were optimized by the Box-Behnken Design approach utilizing the response surface methodology. The highest liquid yield of 88.1 wt.% was obtained at 470 °C temperature, with 2 wt.% of catalysts and 5 h reaction time. The amount of solid carbon was insignificant (0.7 wt.%) and the gas yield was 11.2 wt.%. The γ-Al2O3 showed high efficiency and stability for converting polypropylene to liquid fuels. The catalyst was highly stable, reusable, and showed similar catalytic activity for 3 recycles. These features and the highly selective conversion of PP to gasoline range fuels are crucial for large-scale applications. The GC–MS analysis revealed that the liquid fuel produced mostly contained C8 to C15 hydrocarbons encompassing mostly gasoline and a small fraction of diesel fuel and higher hydrocarbons. The GC–MS data was also supported by SimDist analysis, which exhibited the boiling point ranging from 100 °C to 260 °C for the liquid fuel product. The reaction temperature and time had a significant impact on the liquid yield. The higher temperature favored the formation of the gaseous product of C1-C3 hydrocarbons. The NMR analysis showed that the liquid products mostly contained the highest amount of paraffins followed by olefins and a small fraction of aromatics. The presence of mild acidity in the γ-Al2O3 catalyst and optimum reaction condition provides favorable conditions to produce the highest yield of transportation fuel grade hydrocarbons without over-cracking into gases.