首页 > 最新文献

Cleaner Chemical Engineering最新文献

英文 中文
Technological maturity and future perspectives for green diesel production in Brazil 巴西绿色柴油生产的技术成熟度和未来前景
Pub Date : 2024-10-30 DOI: 10.1016/j.clce.2024.100127
Lucas Sudré dos Santos, Henrique Gasparetto, Nina Paula Gonçalves Salau
During technological and social development, non-renewable sources were used to generate energy in various forms. The overexploitation of fossil fuel sources has raised significant concerns about environmental impacts. Given the need to transition to developing a more sustainable energy matrix, biofuels play an essential role as the transport sector contributes to a large percentage of gas emissions into the atmosphere. Among them, green diesel is an advanced biofuel obtained on an industrial scale, mainly by the catalytic hydrotreating of vegetable oils. In terms of technology and properties, green diesel stands out as a drop-in biofuel, which lacks blending restrictions with conventional diesel due to its chemical similarity. This biofuel also contains fewer impurities and has better combustion performance and an efficient production process. The leading green diesel manufacturing technologies are the main topic of this technological prospection review. Their particularities regarding industrial maturity are discussed, and challenges, opportunities, and drawbacks are considered and discussed for the Brazilian scenario. This analysis shows that although existing technologies have higher technological maturity, Brazil would have a special tendency toward catalytic hydrotreating for producing renewable diesel.
在技术和社会发展过程中,不可再生资源被用于生产各种形式的能源。化石燃料的过度开采引起了人们对环境影响的极大关注。鉴于需要过渡到发展更可持续的能源组合,生物燃料发挥着至关重要的作用,因为运输部门向大气排放的气体占很大比例。其中,绿色柴油是一种先进的生物燃料,主要通过对植物油进行催化加氢处理,在工业规模上获得。就技术和特性而言,绿色柴油是一种可直接使用的生物燃料,由于其化学性质相似,因此与传统柴油没有混合限制。这种生物燃料还含有较少的杂质,具有更好的燃烧性能和高效的生产工艺。领先的绿色柴油生产技术是本技术展望综述的主题。我们讨论了这些技术在工业成熟度方面的特点,并针对巴西的情况考虑和讨论了挑战、机遇和缺点。分析表明,虽然现有技术的技术成熟度较高,但巴西特别倾向于催化加氢处理生产可再生柴油。
{"title":"Technological maturity and future perspectives for green diesel production in Brazil","authors":"Lucas Sudré dos Santos,&nbsp;Henrique Gasparetto,&nbsp;Nina Paula Gonçalves Salau","doi":"10.1016/j.clce.2024.100127","DOIUrl":"10.1016/j.clce.2024.100127","url":null,"abstract":"<div><div>During technological and social development, non-renewable sources were used to generate energy in various forms. The overexploitation of fossil fuel sources has raised significant concerns about environmental impacts. Given the need to transition to developing a more sustainable energy matrix, biofuels play an essential role as the transport sector contributes to a large percentage of gas emissions into the atmosphere. Among them, green diesel is an advanced biofuel obtained on an industrial scale, mainly by the catalytic hydrotreating of vegetable oils. In terms of technology and properties, green diesel stands out as a drop-in biofuel, which lacks blending restrictions with conventional diesel due to its chemical similarity. This biofuel also contains fewer impurities and has better combustion performance and an efficient production process. The leading green diesel manufacturing technologies are the main topic of this technological prospection review. Their particularities regarding industrial maturity are discussed, and challenges, opportunities, and drawbacks are considered and discussed for the Brazilian scenario. This analysis shows that although existing technologies have higher technological maturity, Brazil would have a special tendency toward catalytic hydrotreating for producing renewable diesel.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"10 ","pages":"Article 100127"},"PeriodicalIF":0.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of the gold nanoparticles' Synthesis and application in dye degradation 金纳米粒子的合成及在染料降解中的应用综述
Pub Date : 2024-10-26 DOI: 10.1016/j.clce.2024.100126
Irum Jamil , Fawad Ahmad , Muhammad Imran Khan , Abdallah Shanableh , Nosheen Farooq , Saima Anjum , Muhammad Babar Taj
In this review, we covered the recent advances in the synthesis of gold nanoparticles (AuNPs) and their uses in the degradation of dyes. This study provides a framework to develop a low-cost, eco-friendly, and highly efficient synthesis of AuNPs. From these synthesis methods, toxic by-products are not produced. The present study focuses on the removal of dyes by AuNPs because AuNPs act as suitable absorbents for dyes in a short time. Synthesis of AuNPs from plant extracts, e.g., marine alga, Scutellarin Barbata, Alpinia nigra, Fruit peels, Bacillus marisflavi from raw silk cocoons, amylopectin and poly acrylic acid, L. asparagine, Graphene oxide, LPEI coated AuNPs. The synthesized AuNPs were used further to remove dyes like methylene blue (MB), Rhodamine B (RB) degradation, methyl orange, acid red degradation, and Congo red.
在这篇综述中,我们介绍了金纳米粒子(AuNPs)合成及其在染料降解中应用的最新进展。这项研究为开发低成本、环保和高效的 AuNPs 合成方法提供了一个框架。这些合成方法不会产生有毒的副产品。本研究的重点是用 AuNPs 去除染料,因为 AuNPs 可以在短时间内吸收染料。从植物提取物中合成 AuNPs,如海洋藻类、Scutellarin Barbata、Alpinia nigra、果皮、生丝茧中的 Marisflavi 杆菌、直链淀粉和聚丙烯酸、天门冬酰胺、氧化石墨烯、LPEI 涂层 AuNPs。合成的 AuNPs 被进一步用于去除亚甲基蓝(MB)、罗丹明 B(RB)降解、甲基橙、酸性红降解和刚果红等染料。
{"title":"A review of the gold nanoparticles' Synthesis and application in dye degradation","authors":"Irum Jamil ,&nbsp;Fawad Ahmad ,&nbsp;Muhammad Imran Khan ,&nbsp;Abdallah Shanableh ,&nbsp;Nosheen Farooq ,&nbsp;Saima Anjum ,&nbsp;Muhammad Babar Taj","doi":"10.1016/j.clce.2024.100126","DOIUrl":"10.1016/j.clce.2024.100126","url":null,"abstract":"<div><div>In this review, we covered the recent advances in the synthesis of gold nanoparticles (AuNPs) and their uses in the degradation of dyes. This study provides a framework to develop a low-cost, eco-friendly, and highly efficient synthesis of AuNPs. From these synthesis methods, toxic by-products are not produced. The present study focuses on the removal of dyes by AuNPs because AuNPs act as suitable absorbents for dyes in a short time. Synthesis of AuNPs from plant extracts, e.g., marine alga, Scutellarin Barbata, Alpinia nigra, Fruit peels, Bacillus marisflavi from raw silk cocoons, amylopectin and poly acrylic acid, L. asparagine, Graphene oxide, LPEI coated AuNPs. The synthesized AuNPs were used further to remove dyes like methylene blue (MB), Rhodamine B (RB) degradation, methyl orange, acid red degradation, and Congo red.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"10 ","pages":"Article 100126"},"PeriodicalIF":0.0,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polypropylene to transportation fuel grade hydrocarbons over γ-alumina catalyst 在γ-氧化铝催化剂上将聚丙烯转化为运输燃料级碳氢化合物
Pub Date : 2024-09-16 DOI: 10.1016/j.clce.2024.100124
Sathyapal R. Churipard , Adrian Alejandro Rodriguez Pinos , Sundaramurthy Vedachalam , Maliheh Heravi , Ajay K. Dalai , Saumitra Saxena , Bassam Dally

Catalytic upgrading of plastics to valuable fuels and chemicals is an attractive route to valorize waste plastics. Herein, catalytic pyrolysis of polypropylene was performed over γ-Al2O3 as a heterogeneous catalyst to produce fuel-grade hydrocarbons. The use of an inexpensive γ-Al2O3 catalyst and mild reaction conditions led to high liquid yield selectively in gasoline-range hydrocarbons which stands out from most of the work reported in the literature for polypropylene pyrolysis. The reaction conditions of pyrolysis were optimized by the Box-Behnken Design approach utilizing the response surface methodology. The highest liquid yield of 88.1 wt.% was obtained at 470 °C temperature, with 2 wt.% of catalysts and 5 h reaction time. The amount of solid carbon was insignificant (0.7 wt.%) and the gas yield was 11.2 wt.%. The γ-Al2O3 showed high efficiency and stability for converting polypropylene to liquid fuels. The catalyst was highly stable, reusable, and showed similar catalytic activity for 3 recycles. These features and the highly selective conversion of PP to gasoline range fuels are crucial for large-scale applications. The GC–MS analysis revealed that the liquid fuel produced mostly contained C8 to C15 hydrocarbons encompassing mostly gasoline and a small fraction of diesel fuel and higher hydrocarbons. The GC–MS data was also supported by SimDist analysis, which exhibited the boiling point ranging from 100 °C to 260 °C for the liquid fuel product. The reaction temperature and time had a significant impact on the liquid yield. The higher temperature favored the formation of the gaseous product of C1-C3 hydrocarbons. The NMR analysis showed that the liquid products mostly contained the highest amount of paraffins followed by olefins and a small fraction of aromatics. The presence of mild acidity in the γ-Al2O3 catalyst and optimum reaction condition provides favorable conditions to produce the highest yield of transportation fuel grade hydrocarbons without over-cracking into gases.

将塑料催化升级为有价值的燃料和化学品是实现废塑料价值化的一条极具吸引力的途径。在本文中,以γ-Al2O3 作为异相催化剂对聚丙烯进行了催化热解,以生产燃料级碳氢化合物。使用廉价的 γ-Al2O3 催化剂和温和的反应条件,可选择性地获得高产液量的汽油级碳氢化合物,这与文献中报道的大多数聚丙烯热解研究成果不同。利用响应面方法,采用盒-贝肯设计法对热解反应条件进行了优化。在温度为 470 ℃、催化剂用量为 2 wt.%、反应时间为 5 小时的条件下,液体产率最高,达到 88.1 wt.%。固体碳的数量很少(0.7 wt.%),气体产量为 11.2 wt.%。在将聚丙烯转化为液体燃料的过程中,γ-Al2O3 表现出了高效性和稳定性。该催化剂高度稳定,可重复使用,并在 3 次循环中显示出相似的催化活性。这些特点以及聚丙烯向汽油系列燃料的高选择性转化对于大规模应用至关重要。气相色谱-质谱(GC-MS)分析表明,生产的液体燃料主要含有 C8 至 C15 碳氢化合物,其中大部分是汽油,小部分是柴油和更高的碳氢化合物。SimDist 分析也支持 GC-MS 数据,该分析表明液体燃料产品的沸点范围为 100 °C 至 260 °C。反应温度和时间对液体产率有显著影响。较高的温度有利于 C1-C3 碳氢化合物气态产物的形成。核磁共振分析表明,液态产物中石蜡含量最高,其次是烯烃,还有一小部分芳烃。γ-Al2O3催化剂中的弱酸性和最佳反应条件为生产最高产量的运输燃料级碳氢化合物提供了有利条件,而且不会过度裂解为气体。
{"title":"Polypropylene to transportation fuel grade hydrocarbons over γ-alumina catalyst","authors":"Sathyapal R. Churipard ,&nbsp;Adrian Alejandro Rodriguez Pinos ,&nbsp;Sundaramurthy Vedachalam ,&nbsp;Maliheh Heravi ,&nbsp;Ajay K. Dalai ,&nbsp;Saumitra Saxena ,&nbsp;Bassam Dally","doi":"10.1016/j.clce.2024.100124","DOIUrl":"10.1016/j.clce.2024.100124","url":null,"abstract":"<div><p>Catalytic upgrading of plastics to valuable fuels and chemicals is an attractive route to valorize waste plastics. Herein, catalytic pyrolysis of polypropylene was performed over γ-Al<sub>2</sub>O<sub>3</sub> as a heterogeneous catalyst to produce fuel-grade hydrocarbons. The use of an inexpensive γ-Al<sub>2</sub>O<sub>3</sub> catalyst and mild reaction conditions led to high liquid yield selectively in gasoline-range hydrocarbons which stands out from most of the work reported in the literature for polypropylene pyrolysis. The reaction conditions of pyrolysis were optimized by the Box-Behnken Design approach utilizing the response surface methodology. The highest liquid yield of 88.1 wt.% was obtained at 470 °C temperature, with 2 wt.% of catalysts and 5 h reaction time. The amount of solid carbon was insignificant (0.7 wt.%) and the gas yield was 11.2 wt.%. The γ-Al<sub>2</sub>O<sub>3</sub> showed high efficiency and stability for converting polypropylene to liquid fuels. The catalyst was highly stable, reusable, and showed similar catalytic activity for 3 recycles. These features and the highly selective conversion of PP to gasoline range fuels are crucial for large-scale applications. The GC–MS analysis revealed that the liquid fuel produced mostly contained C8 to C15 hydrocarbons encompassing mostly gasoline and a small fraction of diesel fuel and higher hydrocarbons. The GC–MS data was also supported by SimDist analysis, which exhibited the boiling point ranging from 100 °C to 260 °C for the liquid fuel product. The reaction temperature and time had a significant impact on the liquid yield. The higher temperature favored the formation of the gaseous product of C1-C3 hydrocarbons. The NMR analysis showed that the liquid products mostly contained the highest amount of paraffins followed by olefins and a small fraction of aromatics. The presence of mild acidity in the γ-Al<sub>2</sub>O<sub>3</sub> catalyst and optimum reaction condition provides favorable conditions to produce the highest yield of transportation fuel grade hydrocarbons without over-cracking into gases.</p></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"10 ","pages":"Article 100124"},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772782324000093/pdfft?md5=a381aa9a8bd76006310d6000c12790a1&pid=1-s2.0-S2772782324000093-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of furfural production from xylose over sulfated titanium-niobium mixed oxides catalyst in biphasic system 优化硫酸化钛铌混合氧化物催化剂在双相体系中利用木糖生产糠醛的工艺
Pub Date : 2024-09-15 DOI: 10.1016/j.clce.2024.100125
Sophia Bakili , Thomas Kivevele , Cecil K. King'ondu

The present study investigates the use of SO42-/TiO2Nb2O5 (STNO) catalyst prepared through the modified sol-gel method in the process of xylose dehydration to furfural. The reaction was carried out in a biphasic solvent consisting of toluene and water. The catalyst used in this study was subjected to several characterization methods, including Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The textural properties of the catalyst were evaluated by conducting N2 adsorption and desorption measurements using the Brunauer-Emmett-Teller (BET) method. The impact of catalyst dosage, resident time, xylose concentration, and reaction temperature in the dehydration of xylose to produce furfural was explored. The study employed response surface methodology to identify the optimal operational parameters that would result in the highest furfural selectivity. At a reaction temperature of 150 °C and a reaction time of 180 min, a maximum conversion of xylose of 98 mol%, furfural selectivity of 74 mol%, and a furfural yield of 63 mol% was obtained. The activation energy for the synthesized catalyst was determined to be 26.7 KJ/mol. The results of this investigation show the great potential that sulfated titanium-niobium mixed oxides have in transforming biomass resources into value-added compounds.

本研究探讨了在木糖脱水制糠醛过程中使用改良溶胶-凝胶法制备的 SO42-/TiO2Nb2O5 (STNO) 催化剂的问题。反应在甲苯和水组成的双相溶剂中进行。本研究中使用的催化剂采用了多种表征方法,包括傅立叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)和 X 射线衍射(XRD)。催化剂的质地特性是通过使用布鲁纳-艾美特-泰勒(BET)法进行 N2 吸附和解吸测量来评估的。研究还探讨了催化剂用量、驻留时间、木糖浓度和反应温度对木糖脱水生成糠醛的影响。研究采用了响应面方法,以确定能产生最高糠醛选择性的最佳操作参数。在反应温度为 150 °C 和反应时间为 180 分钟时,木糖的最大转化率为 98 摩尔%,糠醛选择性为 74 摩尔%,糠醛产量为 63 摩尔%。经测定,合成催化剂的活化能为 26.7 KJ/mol。研究结果表明,硫酸化钛铌混合氧化物在将生物质资源转化为高附加值化合物方面具有巨大潜力。
{"title":"Optimization of furfural production from xylose over sulfated titanium-niobium mixed oxides catalyst in biphasic system","authors":"Sophia Bakili ,&nbsp;Thomas Kivevele ,&nbsp;Cecil K. King'ondu","doi":"10.1016/j.clce.2024.100125","DOIUrl":"10.1016/j.clce.2024.100125","url":null,"abstract":"<div><p>The present study investigates the use of SO<sub>4</sub><sup>2-</sup>/TiO<sub>2</sub><img>Nb<sub>2</sub>O<sub>5</sub> (STNO) catalyst prepared through the modified sol-gel method in the process of xylose dehydration to furfural. The reaction was carried out in a biphasic solvent consisting of toluene and water. The catalyst used in this study was subjected to several characterization methods, including Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The textural properties of the catalyst were evaluated by conducting N<sub>2</sub> adsorption and desorption measurements using the Brunauer-Emmett-Teller (BET) method. The impact of catalyst dosage, resident time, xylose concentration, and reaction temperature in the dehydration of xylose to produce furfural was explored. The study employed response surface methodology to identify the optimal operational parameters that would result in the highest furfural selectivity. At a reaction temperature of 150 °C and a reaction time of 180 min, a maximum conversion of xylose of 98 mol%, furfural selectivity of 74 mol%, and a furfural yield of 63 mol% was obtained. The activation energy for the synthesized catalyst was determined to be 26.7 KJ/mol. The results of this investigation show the great potential that sulfated titanium-niobium mixed oxides have in transforming biomass resources into value-added compounds.</p></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"10 ","pages":"Article 100125"},"PeriodicalIF":0.0,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277278232400010X/pdfft?md5=012adbf5dc73a7949872b2528879e1c7&pid=1-s2.0-S277278232400010X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How sustainability can get a competitive advantage: State of the art for stationary battery storage systems 可持续发展如何获得竞争优势:固定式电池储能系统的技术现状
Pub Date : 2024-09-14 DOI: 10.1016/j.clce.2024.100122
Benjamin Achzet , Denise Ott , Rica Fleiner , Marvin Gornik , Andrea Thorenz , Christoph Helbig
Stationary battery storage systems are becoming a critical energy infrastructure around the world. Therefore, responsible handling of battery materials is a fundamental precondition to avoid future social, environmental, and political conflicts. Global battery regulations support sustainable batteries to drive new business models on reuse, remanufacturing and recycling. With strict environmental market entry barriers, the EU will set minimum sustainability standards with the new EU-Battery Directive. The US Inflation Reduction Act provides financial incentives for a scale-up of the domestic battery industry. A hotspot analysis for the residential storage system VARTA.wall shows that a combination of reuse and recycling strategies can reduce the climate change impact by up to 45% and mineral resource use by up to 50% compared to initial battery designs. However, specific sustainability criteria and manufacturer-independent standards need to be set up by politics and industry organizations to bring the necessary technical and logistic infrastructure to the market. The challenge is to set up sustainability criteria strict enough to ensure responsible material handling but still allow cost-effective, practical solutions as well as affordable battery standards. Therefore, our analysis shows the limits of current and the need for future regulations to shift market incentives to sustainable batteries and their infrastructure.
固定式电池存储系统正在成为全球重要的能源基础设施。因此,负责任地处理电池材料是避免未来社会、环境和政治冲突的基本前提。全球电池法规支持可持续电池,以推动再利用、再制造和再循环的新商业模式。在严格的环境市场准入壁垒下,欧盟将通过新的《欧盟电池指令》制定最低可持续发展标准。美国的《减少通货膨胀法案》为扩大国内电池产业规模提供了财政激励。针对住宅储能系统 VARTA.wall 的热点分析表明,与最初的电池设计相比,再利用和回收策略的结合可减少高达 45% 的气候变化影响和高达 50% 的矿物资源使用。然而,政治和行业组织需要制定具体的可持续发展标准和独立于制造商的标准,以便为市场提供必要的技术和物流基础设施。我们面临的挑战是,既要制定足够严格的可持续发展标准,确保负责任地处理材料,又要允许采用成本效益高、实用的解决方案以及负担得起的电池标准。因此,我们的分析表明了当前法规的局限性以及未来将市场激励转向可持续电池及其基础设施的必要性。
{"title":"How sustainability can get a competitive advantage: State of the art for stationary battery storage systems","authors":"Benjamin Achzet ,&nbsp;Denise Ott ,&nbsp;Rica Fleiner ,&nbsp;Marvin Gornik ,&nbsp;Andrea Thorenz ,&nbsp;Christoph Helbig","doi":"10.1016/j.clce.2024.100122","DOIUrl":"10.1016/j.clce.2024.100122","url":null,"abstract":"<div><div>Stationary battery storage systems are becoming a critical energy infrastructure around the world. Therefore, responsible handling of battery materials is a fundamental precondition to avoid future social, environmental, and political conflicts. Global battery regulations support sustainable batteries to drive new business models on reuse, remanufacturing and recycling. With strict environmental market entry barriers, the EU will set minimum sustainability standards with the new EU-Battery Directive. The US Inflation Reduction Act provides financial incentives for a scale-up of the domestic battery industry. A hotspot analysis for the residential storage system VARTA.wall shows that a combination of reuse and recycling strategies can reduce the climate change impact by up to 45% and mineral resource use by up to 50% compared to initial battery designs. However, specific sustainability criteria and manufacturer-independent standards need to be set up by politics and industry organizations to bring the necessary technical and logistic infrastructure to the market. The challenge is to set up sustainability criteria strict enough to ensure responsible material handling but still allow cost-effective, practical solutions as well as affordable battery standards. Therefore, our analysis shows the limits of current and the need for future regulations to shift market incentives to sustainable batteries and their infrastructure.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"10 ","pages":"Article 100122"},"PeriodicalIF":0.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Economic limitation of recent heterogeneous catalysts for ammonia synthesis 近期用于合成氨的异相催化剂的经济局限性
Pub Date : 2024-09-07 DOI: 10.1016/j.clce.2024.100119
Masaki Yoshida , Takaya Ogawa , Keiichi N. Ishihara
The economic performance of newly developed catalysts for ammonia synthesis, Ru/Ca(NH2)2 and Ru/Pr2O3, are evaluated by process simulation using Aspen Plus©. The results show that the high activity of the new catalysts reduces the electricity cost for pressurizing reactant gases; however, the electricity for lowering the temperature in ammonia separation through liquefaction is significant due to the mitigated pressure and almost compensates for the decreased cost. The results show an economic limitation to current research trends that develop a catalyst for ammonia synthesis under low pressure. It is noted that catalyst costs are high due to expensive ruthenium; thus, the lifetime of catalysts significantly influences the total cost. With the assumption of a long lifetime of catalysts, the new catalysts are advantageous when the electricity cost is high, the characteristics of the case in which renewable energy is employed. As the future direction of the catalyst development, recycling or extending the lifetime of the catalysts and replacing Ru with cheap metal will be crucial from the economic viewpoint. Moreover, effective methods for ammonia collection, such as adsorbents, should be focused on reducing the electricity of ammonia liquefaction in cooling separation and giving a vital meaning to the condition mitigated by the newly developed catalysts.
通过使用 Aspen Plus© 进行工艺模拟,评估了新开发的合成氨催化剂 Ru/Ca(NH2)2 和 Ru/Pr2O3 的经济性能。结果表明,新催化剂的高活性降低了反应气体加压的电费;然而,由于压力减轻,液化氨分离过程中降低温度所需的电费非常可观,几乎抵消了成本的下降。研究结果表明,目前开发低压合成氨催化剂的研究趋势存在经济局限性。值得注意的是,由于钌的价格昂贵,催化剂的成本很高;因此,催化剂的使用寿命对总成本有很大影响。假设催化剂的使用寿命较长,那么在电费较高的情况下,新型催化剂就具有优势,而这正是使用可再生能源的特点。从经济角度来看,催化剂的回收利用或延长催化剂的使用寿命以及用廉价金属替代 Ru 将是催化剂未来的发展方向。此外,吸附剂等有效的氨气收集方法应重点关注降低冷却分离过程中的氨气液化电费,并赋予新开发的催化剂缓解条件的重要意义。
{"title":"Economic limitation of recent heterogeneous catalysts for ammonia synthesis","authors":"Masaki Yoshida ,&nbsp;Takaya Ogawa ,&nbsp;Keiichi N. Ishihara","doi":"10.1016/j.clce.2024.100119","DOIUrl":"10.1016/j.clce.2024.100119","url":null,"abstract":"<div><div>The economic performance of newly developed catalysts for ammonia synthesis, Ru/Ca(NH<sub>2</sub>)<sub>2</sub> and Ru/Pr<sub>2</sub>O<sub>3</sub>, are evaluated by process simulation using Aspen Plus©. The results show that the high activity of the new catalysts reduces the electricity cost for pressurizing reactant gases; however, the electricity for lowering the temperature in ammonia separation through liquefaction is significant due to the mitigated pressure and almost compensates for the decreased cost. The results show an economic limitation to current research trends that develop a catalyst for ammonia synthesis under low pressure. It is noted that catalyst costs are high due to expensive ruthenium; thus, the lifetime of catalysts significantly influences the total cost. With the assumption of a long lifetime of catalysts, the new catalysts are advantageous when the electricity cost is high, the characteristics of the case in which renewable energy is employed. As the future direction of the catalyst development, recycling or extending the lifetime of the catalysts and replacing Ru with cheap metal will be crucial from the economic viewpoint. Moreover, effective methods for ammonia collection, such as adsorbents, should be focused on reducing the electricity of ammonia liquefaction in cooling separation and giving a vital meaning to the condition mitigated by the newly developed catalysts.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"10 ","pages":"Article 100119"},"PeriodicalIF":0.0,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved coloration of hemp fabrics via low-pressure argon plasma assisted surface modification 通过低压氩等离子体辅助表面改性提高麻织物的着色性能
Pub Date : 2024-09-07 DOI: 10.1016/j.clce.2024.100123
Kunal S. Bapat , T.P. Kee , S.J. Russell , L. Lin

Interest in hemp as a viable cellulosic fibre for clothing has increased, driven partly by its economic benefits and the importance of natural renewable materials in emerging circular economies. However, the coloration and chemical finishing of lignocellulosic fibres such as hemp typically require large quantities of water and chemicals. Argon plasma pretreatment provides a way of modulating the physical properties of hemp fibres to improve the coloration process without compromising other bulk properties such as tensile strength. Such plasma treatments may contribute to alleviating the negative environmental impacts associated with liquid pretreatments, heating, or the use of auxiliary chemicals. Dyeing of hemp fibres is particularly challenging due to its crystalline chemical structure. In this study, low-pressure argon plasma-assisted surface modification of woven hemp fabrics up to 600 s at 40 and 80 Hz was explored for enhanced dyeability, resulting in enhanced dye-fibre bonding. Fourier-transform infrared spectroscopy and Raman spectroscopy of argon plasma pretreated hemp fabrics produced no noticeable changes in the functional groups of the fibres, but a physiochemical modification was observed in terms of the density of polar groups. Scanning electron microscopy (SEM) images revealed marked morphological changes including nano-etching of the fibre surface at certain argon plasma process conditions. The pretreatment process increased fibre hydrophilicity, and enhanced reactivity of the surficial –OH groups towards fibre-reactive and vat dyes, resulting in higher colour strength in dyed woven hemp fabrics. Overall, we envisage such plasma pretreatments may impact positively on the material and energy efficiency of the hemp fabric dyeing process.

大麻作为一种可用于服装的纤维素纤维,其经济效益和天然可再生材料在新兴循环经济中的重要性,使人们对大麻的兴趣与日俱增。然而,对大麻等木质纤维素纤维进行着色和化学整理通常需要大量的水和化学品。氩等离子体预处理提供了一种调节麻纤维物理特性的方法,可在不影响拉伸强度等其他体积特性的情况下改善着色工艺。这种等离子体处理可有助于减轻与液体预处理、加热或使用辅助化学品相关的负面环境影响。由于麻纤维的结晶化学结构,对其进行染色尤其具有挑战性。在本研究中,我们探索了在 40 和 80 Hz 频率下对编织麻织物进行长达 600 秒的低压氩等离子体辅助表面改性,以提高其染色性,从而增强染料与纤维之间的结合力。对经过氩等离子体预处理的麻织物进行傅立叶变换红外光谱和拉曼光谱分析,发现纤维的官能团没有发生明显变化,但在极性基团密度方面观察到了生化改性。扫描电子显微镜(SEM)图像显示了明显的形态变化,包括在特定氩等离子工艺条件下纤维表面的纳米蚀刻。预处理工艺增加了纤维的亲水性,提高了表面 -OH 基团对纤维反应性染料和还原染料的反应性,从而提高了染色麻织物的着色力。总之,我们认为这种等离子体预处理可能会对麻织物染色工艺的材料和能源效率产生积极影响。
{"title":"Improved coloration of hemp fabrics via low-pressure argon plasma assisted surface modification","authors":"Kunal S. Bapat ,&nbsp;T.P. Kee ,&nbsp;S.J. Russell ,&nbsp;L. Lin","doi":"10.1016/j.clce.2024.100123","DOIUrl":"10.1016/j.clce.2024.100123","url":null,"abstract":"<div><p>Interest in hemp as a viable cellulosic fibre for clothing has increased, driven partly by its economic benefits and the importance of natural renewable materials in emerging circular economies. However, the coloration and chemical finishing of lignocellulosic fibres such as hemp typically require large quantities of water and chemicals. Argon plasma pretreatment provides a way of modulating the physical properties of hemp fibres to improve the coloration process without compromising other bulk properties such as tensile strength. Such plasma treatments may contribute to alleviating the negative environmental impacts associated with liquid pretreatments, heating, or the use of auxiliary chemicals. Dyeing of hemp fibres is particularly challenging due to its crystalline chemical structure. In this study, low-pressure argon plasma-assisted surface modification of woven hemp fabrics up to 600 s at 40 and 80 Hz was explored for enhanced dyeability, resulting in enhanced dye-fibre bonding. Fourier-transform infrared spectroscopy and Raman spectroscopy of argon plasma pretreated hemp fabrics produced no noticeable changes in the functional groups of the fibres, but a physiochemical modification was observed in terms of the density of polar groups. Scanning electron microscopy (SEM) images revealed marked morphological changes including nano-etching of the fibre surface at certain argon plasma process conditions. The pretreatment process increased fibre hydrophilicity, and enhanced reactivity of the surficial –OH groups towards fibre-reactive and vat dyes, resulting in higher colour strength in dyed woven hemp fabrics. Overall, we envisage such plasma pretreatments may impact positively on the material and energy efficiency of the hemp fabric dyeing process.</p></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"10 ","pages":"Article 100123"},"PeriodicalIF":0.0,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772782324000081/pdfft?md5=404969b0c672df90975e0956492b9d6a&pid=1-s2.0-S2772782324000081-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pyrolysis products of C2 hydrocarbons using thermal plasma 使用热等离子体的 C2 碳氢化合物热解产物
Pub Date : 2024-09-05 DOI: 10.1016/j.clce.2024.100121
Yoshiya Matsukawa , Aki Watanabe , Yasuhiro Saito , Yohsuke Matsushita , Koki Era , Takayuki Aoki , Hideyuki Aoki

Film-like carbon is expected to have various applications, and establishing a method for its mass production is highly desirable. Although there have been reports of obtaining film-like solid carbon using thermal plasma, knowledge about the growth behavior of this film-like carbon has not been sufficient. We analyzed the products and their growth behavior by pyrolysis experiments of C2 hydrocarbons with thermal plasma and investigated the pyrolysis behavior of C2 hydrocarbons with thermal plasma by numerical analysis. Solid products with different residence times were sampled from a sampling port in the reactor, observed by electron microscopy, and analyzed for crystallinity by Raman spectroscopy and X-ray diffraction. The solid products collected by a filter at the reactor outlet were measured by pyrolysis gas chromatography-mass spectrometer (GC/MS). The pyrolysis of acetylene yielded particulate carbon as in the pyrolysis in the electric furnace, whereas the pyrolysis of ethylene yielded a film-like carbon. The HRTEM image of ethylene pyrolysis products, however, shows lines indicating a stacked graphite structure of several tens of nanometers, indicating a different structure. In the pyrolysis GC/MS of ethylene pyrolysis products, various compounds were detected, whereas in the pyrolysis of acetylene, polycyclic aromatic hydrocarbons (PAHs) from three to seven rings were not detected. Reaction kinetic calculations using electron collision reactions were performed to examine the important reactions. The amount of ions produced tends to be larger for the pyrolysis of ethylene than for the pyrolysis of acetylene, indicating that the electron collision reaction is more likely to occur with ethylene in this calculation.

薄膜状碳预计会有多种应用,因此建立一种大规模生产薄膜状碳的方法是非常必要的。虽然已有利用热等离子体获得薄膜状固体碳的报道,但对这种薄膜状碳的生长行为还缺乏足够的了解。我们通过热等离子体热解 C2 碳氢化合物的实验分析了产物及其生长行为,并通过数值分析研究了热等离子体热解 C2 碳氢化合物的行为。从反应器的取样口取样,用电子显微镜观察不同停留时间的固体产物,并用拉曼光谱和 X 射线衍射分析结晶度。通过热解气相色谱-质谱仪(GC/MS)测量了反应器出口处过滤器收集的固体产物。乙炔热解产生的颗粒状碳与电炉中的热解相同,而乙烯热解产生的是膜状碳。然而,乙烯热解产物的 HRTEM 图像显示出几十纳米的叠层石墨结构线,表明其结构不同。在乙烯热解产物的热解气相色谱/质谱(GC/MS)中,检测到了各种化合物,而在乙炔热解产物中,没有检测到三环到七环的多环芳烃(PAHs)。利用电子碰撞反应进行了反应动力学计算,以研究重要的反应。乙烯热解产生的离子量往往比乙炔热解产生的离子量大,这表明在本计算中乙烯更有可能发生电子碰撞反应。
{"title":"Pyrolysis products of C2 hydrocarbons using thermal plasma","authors":"Yoshiya Matsukawa ,&nbsp;Aki Watanabe ,&nbsp;Yasuhiro Saito ,&nbsp;Yohsuke Matsushita ,&nbsp;Koki Era ,&nbsp;Takayuki Aoki ,&nbsp;Hideyuki Aoki","doi":"10.1016/j.clce.2024.100121","DOIUrl":"10.1016/j.clce.2024.100121","url":null,"abstract":"<div><p>Film-like carbon is expected to have various applications, and establishing a method for its mass production is highly desirable. Although there have been reports of obtaining film-like solid carbon using thermal plasma, knowledge about the growth behavior of this film-like carbon has not been sufficient. We analyzed the products and their growth behavior by pyrolysis experiments of C2 hydrocarbons with thermal plasma and investigated the pyrolysis behavior of C2 hydrocarbons with thermal plasma by numerical analysis. Solid products with different residence times were sampled from a sampling port in the reactor, observed by electron microscopy, and analyzed for crystallinity by Raman spectroscopy and X-ray diffraction. The solid products collected by a filter at the reactor outlet were measured by pyrolysis gas chromatography-mass spectrometer (GC/MS). The pyrolysis of acetylene yielded particulate carbon as in the pyrolysis in the electric furnace, whereas the pyrolysis of ethylene yielded a film-like carbon. The HRTEM image of ethylene pyrolysis products, however, shows lines indicating a stacked graphite structure of several tens of nanometers, indicating a different structure. In the pyrolysis GC/MS of ethylene pyrolysis products, various compounds were detected, whereas in the pyrolysis of acetylene, polycyclic aromatic hydrocarbons (PAHs) from three to seven rings were not detected. Reaction kinetic calculations using electron collision reactions were performed to examine the important reactions. The amount of ions produced tends to be larger for the pyrolysis of ethylene than for the pyrolysis of acetylene, indicating that the electron collision reaction is more likely to occur with ethylene in this calculation.</p></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"10 ","pages":"Article 100121"},"PeriodicalIF":0.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772782324000068/pdfft?md5=4d8f68eefc1a6b5fcc8be6d3652505e2&pid=1-s2.0-S2772782324000068-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible and synergistic methanol production via biomass gasification and natural gas reforming 通过生物质气化和天然气转化灵活协同生产甲醇
Pub Date : 2024-09-01 DOI: 10.1016/j.clce.2024.100120
Mohammad Ostadi , Leslie Bromberg , Guiyan Zang , Daniel R. Cohn , Emre Gençer

Sustainable liquid fuels are essential for decarbonization of various means of transportation which are challenging to address through electrification or hydrogen use. A possible method for producing low-carbon liquid fuel is through the thermochemical biomass to liquid (BTL) process. In this study, we conduct a technoeconomic-environmental analysis of two processes which take advantage of integration of natural gas reforming and biomass gasification, with the objective of improving the economics. By integrating H2-rich syngas (a mixture of H2/CO) obtained from natural gas reforming with carbon-rich syngas from biomass gasification, we harness synergistic effects. This combination allows us to achieve the optimal H2/CO ratio required for methanol synthesis, while also ensuring efficient carbon utilization. In the first design, natural gas is reformed in an autothermal reformer (ATR) to produce syngas. A Solid Oxide Electrolysis Cell (SOEC) is utilized to supply the O2 for both gasification and reforming processes. The H2 produced by the SOEC adjusts the H2 content in the syngas before the methanol synthesis reactor. In the second design, natural gas is reformed in a gas-heated-reformer (GHR) before an ATR, while an Air Separation Unit (ASU) produces the O2 for the process. As a benchmark, the economics and flexible operation of both processes are compared to a conventional BTL process. In addition, the techno-economic impact of operating in biomass-only or natural gas-only modes are investigated. For a 134 MWth plant with 50 % of entering carbon from biomass, the levelized cost of methanol (LCOMeOH) of ATR+SOEC case is 34 % higher than the BTL reference case, while that of ATR+GHR case is 24 % lower than the BTL reference case. A lifecycle analysis (LCA) is conducted for these designs. Utilizing renewable electricity and 50 % biogenic carbon, the ATR+SOEC case emits 908 kgCO2e /tonne MeOH for a 100-year Global Warming Potential (GWP), while the ATR+GHR case emits 721 kgCO2e /tonne MeOH. For a 20-year GWP, these emissions are 1055 and 915 kgCO2e /tonne MeOH, respectively. These emissions correspond to more than 50 % reduction in LCA emissions when compared to natural gas based LCA emissions.

可持续的液体燃料对于各种交通工具的去碳化至关重要,而通过电气化或使用氢气来解决这些问题具有挑战性。生产低碳液体燃料的一种可行方法是热化学生物质转化为液体(BTL)工艺。在本研究中,我们对两种工艺进行了技术经济环境分析,这两种工艺利用了天然气重整和生物质气化一体化的优势,目的是提高经济效益。通过将天然气转化产生的富含 H2 的合成气(H2/CO 混合气)与生物质气化产生的富含碳的合成气结合起来,我们利用了协同效应。这种组合使我们能够获得合成甲醇所需的最佳 H2/CO 比率,同时还能确保碳的高效利用。在第一种设计中,天然气在自热转化炉(ATR)中转化产生合成气。利用固体氧化物电解池(SOEC)为气化和转化过程提供氧气。SOEC 产生的 H2 可调节甲醇合成反应器前合成气中的 H2 含量。在第二种设计中,天然气在气加热转化炉 (GHR) 中进行转化,然后再进入甲醇合成反应器,同时由空气分离装置 (ASU) 为该工艺提供氧气。作为基准,将这两种工艺的经济性和灵活操作与传统的 BTL 工艺进行了比较。此外,还研究了在纯生物质或纯天然气模式下运行的技术经济影响。对于生物质输入碳占 50% 的 134 MWth 工厂,ATR+SOEC 案例的甲醇平准化成本(LCOMeOH)比 BTL 参考案例高 34%,而 ATR+GHR 案例的甲醇平准化成本比 BTL 参考案例低 24%。对这些设计进行了生命周期分析(LCA)。利用可再生电力和 50% 的生物碳,在 100 年全球升温潜能值 (GWP) 下,ATR+SOEC 案例排放 908 kgCO2e /tonne MeOH,而 ATR+GHR 案例排放 721 kgCO2e /tonne MeOH。对于 20 年全球升温潜能值,这些排放量分别为 1055 和 915 千克 CO2e / 吨甲基OH。与基于天然气的生命周期评估排放量相比,这些排放量相当于减少了 50% 以上。
{"title":"Flexible and synergistic methanol production via biomass gasification and natural gas reforming","authors":"Mohammad Ostadi ,&nbsp;Leslie Bromberg ,&nbsp;Guiyan Zang ,&nbsp;Daniel R. Cohn ,&nbsp;Emre Gençer","doi":"10.1016/j.clce.2024.100120","DOIUrl":"10.1016/j.clce.2024.100120","url":null,"abstract":"<div><p>Sustainable liquid fuels are essential for decarbonization of various means of transportation which are challenging to address through electrification or hydrogen use. A possible method for producing low-carbon liquid fuel is through the thermochemical biomass to liquid (BTL) process. In this study, we conduct a technoeconomic-environmental analysis of two processes which take advantage of integration of natural gas reforming and biomass gasification, with the objective of improving the economics. By integrating H<sub>2</sub>-rich syngas (a mixture of H<sub>2</sub>/CO) obtained from natural gas reforming with carbon-rich syngas from biomass gasification, we harness synergistic effects. This combination allows us to achieve the optimal H<sub>2</sub>/CO ratio required for methanol synthesis, while also ensuring efficient carbon utilization. In the first design, natural gas is reformed in an autothermal reformer (ATR) to produce syngas. A Solid Oxide Electrolysis Cell (SOEC) is utilized to supply the O<sub>2</sub> for both gasification and reforming processes. The H<sub>2</sub> produced by the SOEC adjusts the H<sub>2</sub> content in the syngas before the methanol synthesis reactor. In the second design, natural gas is reformed in a gas-heated-reformer (GHR) before an ATR, while an Air Separation Unit (ASU) produces the O<sub>2</sub> for the process. As a benchmark, the economics and flexible operation of both processes are compared to a conventional BTL process. In addition, the techno-economic impact of operating in biomass-only or natural gas-only modes are investigated. For a 134 MW<sub>th</sub> plant with 50 % of entering carbon from biomass, the levelized cost of methanol (LCOMeOH) of ATR+SOEC case is 34 % higher than the BTL reference case, while that of ATR+GHR case is 24 % lower than the BTL reference case. A lifecycle analysis (LCA) is conducted for these designs. Utilizing renewable electricity and 50 % biogenic carbon, the ATR+SOEC case emits 908 kgCO<sub>2e</sub> /tonne MeOH for a 100-year Global Warming Potential (GWP), while the ATR+GHR case emits 721 kgCO<sub>2e</sub> /tonne MeOH. For a 20-year GWP, these emissions are 1055 and 915 kgCO<sub>2e</sub> /tonne MeOH, respectively. These emissions correspond to more than 50 % reduction in LCA emissions when compared to natural gas based LCA emissions.</p></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"10 ","pages":"Article 100120"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772782324000056/pdfft?md5=a66e9e4ebf5394b1fbf1420dce8c099a&pid=1-s2.0-S2772782324000056-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrodes from carbonized grass clippings for bioelectrochemical systems 用于生物电化学系统的碳化草屑电极
Pub Date : 2024-05-10 DOI: 10.1016/j.clce.2024.100118
Alexander Langsdorf , Michael Halim , Marianne Volkmar , Markus Stöckl , Ralf Harnisch , Peter Hahn , Roland Ulber , Dirk Holtmann

One major obstacle to the commercialization of electrobiotechnological systems is the cost of materials, including expensive electrodes. Smart recycling as well as the use of renewable resources can contribute to producing electrodes more ecologically and economically. Green waste is a biogenic residual material that occurs mainly in urban areas and is currently not recycled to a sufficient extent. Here we show the fabrication of electrodes from carbonized grass clippings and their application in microbial electrosynthesis as well as microbial fuel cells. While the electrodes cannot compete with established metal competitors for water electrolysis in microbial electrosynthesis, they perform comparably to commercial graphite electrodes in microbial fuel cells. With Geobacter sulfurreducens, a current response can be recorded for more than six weeks. To the best of our knowledge, this is the first time that carbonized green waste has been used as an electrode material for bioelectrochemical systems. This demonstrates the potential of carbonized biological materials as a raw material for electrodes and presents a recycling alternative for green waste.

电生物技术系统商业化的一个主要障碍是材料成本,包括昂贵的电极。巧妙的回收利用以及可再生资源的使用有助于生产出更生态、更经济的电极。绿色垃圾是一种生物残留材料,主要出现在城市地区,目前还没有得到充分的回收利用。在这里,我们展示了利用碳化草屑制造电极及其在微生物电合成和微生物燃料电池中的应用。在微生物电合成中,这些电极在电解水方面无法与现有的金属竞争者相比,但在微生物燃料电池中,它们的性能可与商用石墨电极媲美。利用硫化还原 Geobacter,可以记录超过六周的电流响应。据我们所知,这是碳化绿色废物首次被用作生物电化学系统的电极材料。这证明了碳化生物材料作为电极原材料的潜力,并为绿色废物的回收利用提供了一种替代方案。
{"title":"Electrodes from carbonized grass clippings for bioelectrochemical systems","authors":"Alexander Langsdorf ,&nbsp;Michael Halim ,&nbsp;Marianne Volkmar ,&nbsp;Markus Stöckl ,&nbsp;Ralf Harnisch ,&nbsp;Peter Hahn ,&nbsp;Roland Ulber ,&nbsp;Dirk Holtmann","doi":"10.1016/j.clce.2024.100118","DOIUrl":"https://doi.org/10.1016/j.clce.2024.100118","url":null,"abstract":"<div><p>One major obstacle to the commercialization of electrobiotechnological systems is the cost of materials, including expensive electrodes. Smart recycling as well as the use of renewable resources can contribute to producing electrodes more ecologically and economically. Green waste is a biogenic residual material that occurs mainly in urban areas and is currently not recycled to a sufficient extent. Here we show the fabrication of electrodes from carbonized grass clippings and their application in microbial electrosynthesis as well as microbial fuel cells. While the electrodes cannot compete with established metal competitors for water electrolysis in microbial electrosynthesis, they perform comparably to commercial graphite electrodes in microbial fuel cells. With <em>Geobacter sulfurreducens</em>, a current response can be recorded for more than six weeks. To the best of our knowledge, this is the first time that carbonized green waste has been used as an electrode material for bioelectrochemical systems. This demonstrates the potential of carbonized biological materials as a raw material for electrodes and presents a recycling alternative for green waste.</p></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"9 ","pages":"Article 100118"},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772782324000032/pdfft?md5=380d7566b129e6efac23e7b9c95628de&pid=1-s2.0-S2772782324000032-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140951629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cleaner Chemical Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1