SETD3 functions beyond histidine methylation

IF 5.2 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Life sciences Pub Date : 2024-09-17 DOI:10.1016/j.lfs.2024.123064
{"title":"SETD3 functions beyond histidine methylation","authors":"","doi":"10.1016/j.lfs.2024.123064","DOIUrl":null,"url":null,"abstract":"<div><p>SETD3 is a member of SET domain-containing proteins. It has been discovered as the first metazoan protein (actin) histidine methyltransferase. In addition to this well-characterized molecular function of SETD3, it has been clearly shown to be involved in multiple biological processes, such as cell differentiation, tumorigenesis and viral infection. Here, we summarize the current knowledge on the roles of SETD3 beyond its histidine methyltransferase activity, and outline its cellular and molecular modes of action, as well as the upstream regulation on SETD3, therefore providing insights for the molecular basis of how SETD3 fine regulates multiple physiological and pathological processes.</p></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320524006544","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

SETD3 is a member of SET domain-containing proteins. It has been discovered as the first metazoan protein (actin) histidine methyltransferase. In addition to this well-characterized molecular function of SETD3, it has been clearly shown to be involved in multiple biological processes, such as cell differentiation, tumorigenesis and viral infection. Here, we summarize the current knowledge on the roles of SETD3 beyond its histidine methyltransferase activity, and outline its cellular and molecular modes of action, as well as the upstream regulation on SETD3, therefore providing insights for the molecular basis of how SETD3 fine regulates multiple physiological and pathological processes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SETD3 的功能不仅限于组氨酸甲基化
SETD3 是含 SET 结构域的蛋白之一。它是第一个被发现的元动物蛋白质(肌动蛋白)组氨酸甲基转移酶。SETD3 的分子功能已被明确描述,此外,它还参与了多种生物过程,如细胞分化、肿瘤发生和病毒感染。在此,我们总结了目前关于 SETD3 组氨酸甲基转移酶活性之外的作用的知识,概述了其细胞和分子作用模式,以及对 SETD3 的上游调控,从而为 SETD3 如何精细调控多种生理和病理过程的分子基础提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Life sciences
Life sciences 医学-药学
CiteScore
12.20
自引率
1.60%
发文量
841
审稿时长
6 months
期刊介绍: Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed. The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.
期刊最新文献
Biochanin A-mediated anti-ferroptosis is associated with reduction of septic kidney injury Schwann cell autotransplantation for the treatment of peripheral nerve injury Sodium selenite inhibits cervical cancer progression via ROS-mediated suppression of glucose metabolic reprogramming Zinc pyrithione ameliorates colitis in mice by interacting on intestinal epithelial TRPA1 and TRPV4 channels Navigating therapeutic prospects by modulating autophagy in colorectal cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1