Aims: CKN is a self-developed LXRα agonist capable of up-regulating the expression of ABCA1, diminishing intracellular lipid deposition, and attenuating the inflammatory response. Nevertheless, the protective effect and mechanism of ischemic stroke remain indistinct. The aim of this study is to investigate the therapeutic effects and the underlying mechanisms of CKN in ischemic stroke.
Materials and methods: In this study, the tMCAO model was utilized to induce cerebral artery occlusion in mice, and cholesterol-induced BV2 and primary microglia models were adopted. Neuronal damage and the effect of CKN on ABCA1 expression, lipid deposition, and TLR4 signaling in penumbra microglia were assessed.
Key findings: The results demonstrated that: (1) CKN treatment markedly ameliorated the neurological deficit score of the tMCAO model, contracted the infarct size, and mitigated the damage of the cerebral cortex. (2) CKN has the capacity to up-regulate the expression of ABCA1 in microglia within the ischemic penumbra by activating the LXRα/ABCA1 signaling pathway, and minimize lipid deposition and inflammatory responses. (3) The activation of the LXRα/ABCA1 signaling pathway is profoundly implicated in the inflammatory response triggered by CKN inhibition of the TLR4 signaling pathway in microglia.
Significance: The present study demonstrated for the first time that the activation of the LXRα/ABCA1 signaling possessed the ability to attenuate reperfusion injury in ischemic stroke by means of reducing lipid droplet formation and TLR4-mediated inflammatory signaling within microglia in the ischemic penumbra.
Type I interferons (IFNs-I), a group of pleiotropic cytokines, critically modulate host response in various inflammatory diseases. However, the role of the IFN-I pathway in periodontitis remains largely unknown. In this report, we describe that the IFN-β levels in the gingival crevicular fluid of human subjects were negatively associated with periodontitis and clinical gingival inflammation. Disruption of IFN-I signaling worsened alveolar bone resorption in a ligature-induced periodontitis murine model. Deficiency of the IFN-I pathway resulted in a more exaggerated inflammatory response in myeloid cells and drastically increased the interleukin-17 (IL-17)-mediated neutrophil recruitment in the gingiva. We further identified that the myeloid lineage-specific IFN-I response was essential in safeguarding against periodontal inflammation by suppressing the IL-17-producing γδ T cells in the gingiva. IFN-I signaling also directly repressed osteoclastogenesis in monocytes, which are precursor cells for osteoclasts. Therefore, our findings demonstrate that an integral myeloid-specific IFN-I pathway plays a protective role against bone loss by keeping the IL-17-neutrophil axis in check and directly inhibiting osteoclast formation in periodontitis.