Neuronal calcium sensor 1 (NCS1) belongs to the family of neuronal calcium sensing proteins, which are distributed in various tissues of the human body, mainly in nerve tissues. NCS1 has multiple functions, including participating in the transduction of intracellular calcium signals, neuronal morphology, development and exocytosis. NCS1 performs related functions by interacting with a variety of proteins, including inositol 1,4,5-trisphosphate receptors (InsP3Rs), voltage-gated K+ and Ca2+ channels, phosphatidylinositol 4-kinase IIIβ (PI (4) KIIIβ). Over the years, researches on NCS1 and diseases have mostly focused on the nervous system and cardiovascular system, it is found that the abnormal expression of NCS1 is also related to cancer. Starting from the structure of NCS1 and the proteins that interact with it, this review expounds the mechanism or potential mechanism of NCS1 imbalance leading to various diseases.
Lung cancer remains one of the most significant global health challenges, responsible for 18 % of all cancer-related deaths. While risk factors such as heavy metal exposure and cigarette smoking are well-known contributors, the limitations of conventional treatments including severe side effects and drug resistance highlight the urgent need for more targeted and safer therapeutic options. In this context, peptides emerge as a novel, precise, and effective class of therapies for lung cancer treatment. Peptides have shown promise in limiting lung cancer progression by targeting key molecular pathways involved in tumour growth. Anti-non-small cell lung cancer peptides that specifically target proteins like EGFR, TP53, BRAF, MET, ROS1, and ALK have demonstrated potential in improving lung cancer outcomes. Additionally, anti-inflammatory and apoptosis-inducing peptides offer further therapeutic benefits. This review provides a comprehensive overview of the peptides currently in use or under investigation for the treatment of lung cancer, highlighting their mechanisms of action and therapeutic potential. As evidence continues to accumulate, peptides are poised to become a promising new therapeutic option in the fight against lung cancer.