Using waste to treat waste: Utilizing pickling liquor for detoxification and extraction of valuable elements from electroplating sludge

IF 6.7 2区 环境科学与生态学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Environmental Technology & Innovation Pub Date : 2024-09-12 DOI:10.1016/j.eti.2024.103826
Mehrdad Kordloo , Hanieh Noeparast , Ali Rezaei Ashani , Marzieh Hosseini Nasab , Yousef Ghorbani
{"title":"Using waste to treat waste: Utilizing pickling liquor for detoxification and extraction of valuable elements from electroplating sludge","authors":"Mehrdad Kordloo ,&nbsp;Hanieh Noeparast ,&nbsp;Ali Rezaei Ashani ,&nbsp;Marzieh Hosseini Nasab ,&nbsp;Yousef Ghorbani","doi":"10.1016/j.eti.2024.103826","DOIUrl":null,"url":null,"abstract":"<div><p>Addressing the urgent need for sustainable solutions in waste management, this study focuses on the pivotal task of recycling heavy metals from electroplating sludge (ES), a critical issue both environmentally and economically. The research introduces a novel leaching process utilizing pickling liquor as a reagent to extract valuable metals from the sludge. Key parameters such as agitation speed, solid to liquid ratio (S/L), temperature, and duration were examined to optimize the leaching rate. Results revealed impressive extraction rates, with 92.33 % Cr, 89.49 % Cu, and 89.59 % Ni extracted within 120 min from S/L 10 g/L, at 300 rpm, and 25 °C. However, it was noted that increasing temperature negatively impacted the leaching rate and led to the formation of undesirable compounds. X-ray diffraction (XRD) analysis identified gypsum and potassium jarosite as predominant compounds formed on the leaching residues at different temperatures of 25 °C and 45 °C. Field emission scanning electron microscopy (FE-SEM) illustrated significant morphological changes in the residues, indicating the influence of temperature on compound formation. Additionally, environmental risk assessment of the residues was conducted using synthetic precipitation leaching procedure (SPLP) and toxicology characteristic leaching procedure (TCLP) methods. In conclusion, this research underscores the promising potential of the developed leaching process using pickling liquor to reclaim valuable metals from ES. By optimizing parameters and assessing environmental risks, this study contributes to advancing environmentally sound practices in industrial waste management.</p></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103826"},"PeriodicalIF":6.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S235218642400302X/pdfft?md5=c3bce7f1a5866bdeecaace8746c3de14&pid=1-s2.0-S235218642400302X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology & Innovation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235218642400302X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Addressing the urgent need for sustainable solutions in waste management, this study focuses on the pivotal task of recycling heavy metals from electroplating sludge (ES), a critical issue both environmentally and economically. The research introduces a novel leaching process utilizing pickling liquor as a reagent to extract valuable metals from the sludge. Key parameters such as agitation speed, solid to liquid ratio (S/L), temperature, and duration were examined to optimize the leaching rate. Results revealed impressive extraction rates, with 92.33 % Cr, 89.49 % Cu, and 89.59 % Ni extracted within 120 min from S/L 10 g/L, at 300 rpm, and 25 °C. However, it was noted that increasing temperature negatively impacted the leaching rate and led to the formation of undesirable compounds. X-ray diffraction (XRD) analysis identified gypsum and potassium jarosite as predominant compounds formed on the leaching residues at different temperatures of 25 °C and 45 °C. Field emission scanning electron microscopy (FE-SEM) illustrated significant morphological changes in the residues, indicating the influence of temperature on compound formation. Additionally, environmental risk assessment of the residues was conducted using synthetic precipitation leaching procedure (SPLP) and toxicology characteristic leaching procedure (TCLP) methods. In conclusion, this research underscores the promising potential of the developed leaching process using pickling liquor to reclaim valuable metals from ES. By optimizing parameters and assessing environmental risks, this study contributes to advancing environmentally sound practices in industrial waste management.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以废治废:利用酸洗液从电镀污泥中解毒和提取有价元素
为了解决废物管理中对可持续解决方案的迫切需求,本研究重点关注从电镀污泥(ES)中回收重金属这一关键任务,这在环境和经济方面都是一个重要问题。研究介绍了一种利用酸洗液作为试剂从污泥中提取有价金属的新型浸出工艺。对搅拌速度、固液比 (S/L)、温度和持续时间等关键参数进行了研究,以优化浸出率。结果表明,在 300 转/分钟和 25 °C、固液比 10 g/L 的条件下,120 分钟内可提取 92.33 % 的铬、89.49 % 的铜和 89.59 % 的镍。然而,温度升高会对浸出率产生负面影响,并导致不良化合物的形成。X 射线衍射(XRD)分析表明,在 25 °C 和 45 °C 的不同温度下,浸出残渣上形成的主要化合物是石膏和钾盐。场发射扫描电子显微镜(FE-SEM)显示残留物的形态发生了显著变化,表明温度对化合物的形成有影响。此外,还使用合成沉淀浸出程序(SPLP)和毒理学特征浸出程序(TCLP)方法对残留物进行了环境风险评估。总之,这项研究强调了所开发的使用酸洗液从 ES 中回收有价金属的浸出工艺的巨大潜力。通过优化参数和评估环境风险,本研究有助于推进工业废物管理的无害环境实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Technology & Innovation
Environmental Technology & Innovation Environmental Science-General Environmental Science
CiteScore
14.00
自引率
4.20%
发文量
435
审稿时长
74 days
期刊介绍: Environmental Technology & Innovation adopts a challenge-oriented approach to solutions by integrating natural sciences to promote a sustainable future. The journal aims to foster the creation and development of innovative products, technologies, and ideas that enhance the environment, with impacts across soil, air, water, and food in rural and urban areas. As a platform for disseminating scientific evidence for environmental protection and sustainable development, the journal emphasizes fundamental science, methodologies, tools, techniques, and policy considerations. It emphasizes the importance of science and technology in environmental benefits, including smarter, cleaner technologies for environmental protection, more efficient resource processing methods, and the evidence supporting their effectiveness.
期刊最新文献
Remediation of Pb and Cd contaminated sediments by wheat straw biochar and microbial community analysis The ammonium transporter AmtB is dispensable for the uptake of ammonium in the phototrophic diazotroph Rhodopseudomonas palustris An innovative sustainable solution: Recycling shield-discharge waste soil as fine aggregate to produce eco-friendly geopolymer-based flowable backfill materials Assessing subgroup differences and underlying causes of ozone-associated mortality burden in China using multi-source data Synchronously improving intracellular electron transfer in electron-donating bacteria and electron-accepting methanogens for facilitating direct interspecies electron transfer during anaerobic digestion of kitchen wastes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1