Reducing equivalent magnetic noise by electrode design and magnetic annealing in Quartz/Metglas magnetoelectric sensors

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2024-09-13 DOI:10.1016/j.sna.2024.115903
Xuan Sun, Jingen Wu, Yiwei Xu, Jieqiang Gao, Bomin Lin, Guannan Yang, Bingfeng Ge, Zhongqiang Hu, Ming Liu
{"title":"Reducing equivalent magnetic noise by electrode design and magnetic annealing in Quartz/Metglas magnetoelectric sensors","authors":"Xuan Sun,&nbsp;Jingen Wu,&nbsp;Yiwei Xu,&nbsp;Jieqiang Gao,&nbsp;Bomin Lin,&nbsp;Guannan Yang,&nbsp;Bingfeng Ge,&nbsp;Zhongqiang Hu,&nbsp;Ming Liu","doi":"10.1016/j.sna.2024.115903","DOIUrl":null,"url":null,"abstract":"<div><p>Magnetoelectric (ME) composites are promising for the development of high-performance magnetometers due to their high sensitivity, low cost, low power consumption, and small size. Enhancing the ME coefficient while reducing the background noise is an effective method to improve the performance of ME sensors, which remains challenging. In this work, we propose a method to reduce the equivalent magnetic noise by optimizing the electrode design and the magnetic annealing process in magnetoelectric quartz/Metglas composites. Compared with the non-optimized ME composites, the ME coefficient increases by 1.38 times while the background noise decreases by about 0.78 times, resulting in a LoD of 10 fT at resonance. Due to the high ME coefficient and low background noise, the equivalent magnetic noise from 20 kHz to 50 kHz was less than 6.10 pT/Hz<sup>1/2</sup>. The results show that proper annealing treatment of Metglas is beneficial for improving the soft magnetic properties. Meanwhile, the hollow electrode of quartz can reduce the equivalent capacitance and enhance the quality factor of the piezoelectric layer. This work demonstrates a feasible way to enhance the performance of ME magnetic field sensors.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424724008975","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetoelectric (ME) composites are promising for the development of high-performance magnetometers due to their high sensitivity, low cost, low power consumption, and small size. Enhancing the ME coefficient while reducing the background noise is an effective method to improve the performance of ME sensors, which remains challenging. In this work, we propose a method to reduce the equivalent magnetic noise by optimizing the electrode design and the magnetic annealing process in magnetoelectric quartz/Metglas composites. Compared with the non-optimized ME composites, the ME coefficient increases by 1.38 times while the background noise decreases by about 0.78 times, resulting in a LoD of 10 fT at resonance. Due to the high ME coefficient and low background noise, the equivalent magnetic noise from 20 kHz to 50 kHz was less than 6.10 pT/Hz1/2. The results show that proper annealing treatment of Metglas is beneficial for improving the soft magnetic properties. Meanwhile, the hollow electrode of quartz can reduce the equivalent capacitance and enhance the quality factor of the piezoelectric layer. This work demonstrates a feasible way to enhance the performance of ME magnetic field sensors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过电极设计和磁退火降低石英/金属玻璃磁电传感器的等效磁噪声
磁电(ME)复合材料具有灵敏度高、成本低、功耗低和体积小等优点,因此在开发高性能磁强计方面大有可为。在提高 ME 系数的同时降低背景噪声是提高 ME 传感器性能的有效方法,但这仍然具有挑战性。在这项工作中,我们提出了一种通过优化磁电石英/金属玻璃复合材料的电极设计和磁退火工艺来降低等效磁噪声的方法。与未优化的 ME 复合材料相比,ME 系数增加了 1.38 倍,而背景噪声降低了约 0.78 倍,从而使共振时的 LoD 达到 10 fT。由于 ME 系数高、本底噪声低,从 20 kHz 到 50 kHz 的等效磁噪声小于 6.10 pT/Hz1/2。结果表明,适当的退火处理有利于提高 Metglas 的软磁特性。同时,石英空心电极可以降低等效电容,提高压电层的品质因数。这项研究为提高 ME 磁场传感器的性能提供了一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Corrigendum to "The hydroalcoholic extract of Nasturtium officinale reduces oxidative stress markers and increases total antioxidant capacity in patients with asthma" [J. Ethnopharmacol. 318 (2024) 116862]. Corrigendum to "Asiaticoside-nitric oxide promoting diabetic wound healing through the miRNA-21-5p/TGF-β1/SMAD7/TIMP3 signaling pathway" [J. Ethnopharmacol. 319 (2024) 117266]. Corrigendum to "The antiviral effect and potential mechanism of Houttuynia cordata Thunb. (HC) against coxsackievirus A4" [J. Ethnopharmacol. 337, part 3 (2024) 118975]. Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3. Diagnostic value of 18F-PSMA-1007 PET/CT for predicting the pathological grade of prostate cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1