Reduced order homogenization of composites with strength difference effects in elastoplasticity coupled to damage

IF 6.3 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Composite Structures Pub Date : 2024-09-16 DOI:10.1016/j.compstruct.2024.118564
{"title":"Reduced order homogenization of composites with strength difference effects in elastoplasticity coupled to damage","authors":"","doi":"10.1016/j.compstruct.2024.118564","DOIUrl":null,"url":null,"abstract":"<div><p>This paper addresses reduced order homogenization of composites with strength difference (SD) effects in elastoplasticity coupled to damage, while containing several well-known plasticity criteria as special cases. We extend two approaches for this purpose: 1. nonuniform transformation field analysis (NTFA by Michel and Suquet, 2003) and 2. a recent variant called cluster-based NTFA (CNTFA by Ri et al., 2021), and conduct a comparative study on them. For the NTFA approach, a space–time decomposition is done separately for volumetric and deviatoric inelastic strain fields. A coupled model is derived for the present case to govern the evolution of resulting reduced variables. For the CNTFA approach, a clustering analysis is additionally performed for a spatial decomposition of the micro-domain. Unlike the NTFA, the online analysis is formulated as a unified minimization problem, which does not require a major adaptation for the present case. For both approaches, localization rules are deduced from the superposition principle and then homogenized to obtain the effective responses. FE-based implementation is presented in detail for both approaches. Numerical results show that both approaches provide a striking acceleration rate against conventional FE computations. The CNTFA predictions are more accurate than the NTFA ones by involving clustered microscopic fields in the online analysis, thus resulting into a slightly increased memory requirement.</p></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0263822324006925/pdfft?md5=a9fddea32725573af2cf15dad60abc22&pid=1-s2.0-S0263822324006925-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324006925","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses reduced order homogenization of composites with strength difference (SD) effects in elastoplasticity coupled to damage, while containing several well-known plasticity criteria as special cases. We extend two approaches for this purpose: 1. nonuniform transformation field analysis (NTFA by Michel and Suquet, 2003) and 2. a recent variant called cluster-based NTFA (CNTFA by Ri et al., 2021), and conduct a comparative study on them. For the NTFA approach, a space–time decomposition is done separately for volumetric and deviatoric inelastic strain fields. A coupled model is derived for the present case to govern the evolution of resulting reduced variables. For the CNTFA approach, a clustering analysis is additionally performed for a spatial decomposition of the micro-domain. Unlike the NTFA, the online analysis is formulated as a unified minimization problem, which does not require a major adaptation for the present case. For both approaches, localization rules are deduced from the superposition principle and then homogenized to obtain the effective responses. FE-based implementation is presented in detail for both approaches. Numerical results show that both approaches provide a striking acceleration rate against conventional FE computations. The CNTFA predictions are more accurate than the NTFA ones by involving clustered microscopic fields in the online analysis, thus resulting into a slightly increased memory requirement.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Composite Structures
Composite Structures 工程技术-材料科学:复合
CiteScore
12.00
自引率
12.70%
发文量
1246
审稿时长
78 days
期刊介绍: The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials. The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.
期刊最新文献
Study on stable configurations and snap through of the rectangular VS bi-stable laminates with curvilinear fiber alignment An efficient hierarchical Bayesian framework for multiscale material modeling Reduced order homogenization of composites with strength difference effects in elastoplasticity coupled to damage Investigation of the degradation over steel/GFRP single lap joint: UV radiation and immersion at different temperatures Assessment of ply thickness and aluminum foils interleaving on the impact response of CFRP composites designed for cryogenic pressure vessels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1