Ali Sobhani , Seyed Mostafa Siadatmousavi , Ali Mehdinia
{"title":"Surface microplastics dynamics in the Persian Gulf and Arabian Sea using numerical modelling and CYGNSS satellite estimations","authors":"Ali Sobhani , Seyed Mostafa Siadatmousavi , Ali Mehdinia","doi":"10.1016/j.marenvres.2024.106749","DOIUrl":null,"url":null,"abstract":"<div><p>Microplastics have long-term negative effects on marine environment. One of the most significant threats of microplastics is their ability to absorb chemicals which enhances the transfer of pollutants. These pollutants eventually enter the tissues of living organisms e.g. through ingestion. To shed a light on the way these particles accumulate in the surface water of Persian Gulf and the Arabian Sea and the spatial and temporal distribution of their concentrations, a combination of field sampling, remote sensing techniques, and numerical modelling methods were used. Samples were collected using a Neuston net at 31 stations in 2018 and 2021. A hydrodynamic model was used to study the transport of these materials by tide, wind and density-driven currents, and microplastic pathways were mapped. Also, CYGNSS satellite data were used to estimate the particles concentration by measuring the roughness of the ocean surface. It was shown that the northeastern part of the Arabian Sea had the highest concentration of microplastics in winter. Oman's northern border and the Strait of Hormuz had relatively higher concentrations than other parts. This accumulation increases in winter and continues to rise until the end of summer. In autumn, the accumulation decreases, but it begins to increase again in the north of Oman during winter. During winter, the southern part of the Persian Gulf had high concentration, while from summer to autumn, the concentration in the northwest region had increased. In 2021, the average microplastic concentration in the Arabian Sea and the Gulf of Oman varied seasonally from 2.6x10<sup>4</sup> to 1.8x10<sup>4</sup> particle per km<sup>2</sup>. Meanwhile, the average concentration of pollutants in the Persian Gulf was almost invariable throughout the year, ranging from 2.8 x10<sup>4</sup> to 2.6 x10<sup>4</sup> particle per km<sup>2</sup>. Furthermore, the study reveals that these concentrations are influenced by various environmental factors. In the Persian Gulf, water density is the most significant factor controlling the surface concentration of microplastics, while in the Arabian Sea, the interaction of wind speed and sea surface currents is crucial.</p></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"202 ","pages":"Article 106749"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141113624004100","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics have long-term negative effects on marine environment. One of the most significant threats of microplastics is their ability to absorb chemicals which enhances the transfer of pollutants. These pollutants eventually enter the tissues of living organisms e.g. through ingestion. To shed a light on the way these particles accumulate in the surface water of Persian Gulf and the Arabian Sea and the spatial and temporal distribution of their concentrations, a combination of field sampling, remote sensing techniques, and numerical modelling methods were used. Samples were collected using a Neuston net at 31 stations in 2018 and 2021. A hydrodynamic model was used to study the transport of these materials by tide, wind and density-driven currents, and microplastic pathways were mapped. Also, CYGNSS satellite data were used to estimate the particles concentration by measuring the roughness of the ocean surface. It was shown that the northeastern part of the Arabian Sea had the highest concentration of microplastics in winter. Oman's northern border and the Strait of Hormuz had relatively higher concentrations than other parts. This accumulation increases in winter and continues to rise until the end of summer. In autumn, the accumulation decreases, but it begins to increase again in the north of Oman during winter. During winter, the southern part of the Persian Gulf had high concentration, while from summer to autumn, the concentration in the northwest region had increased. In 2021, the average microplastic concentration in the Arabian Sea and the Gulf of Oman varied seasonally from 2.6x104 to 1.8x104 particle per km2. Meanwhile, the average concentration of pollutants in the Persian Gulf was almost invariable throughout the year, ranging from 2.8 x104 to 2.6 x104 particle per km2. Furthermore, the study reveals that these concentrations are influenced by various environmental factors. In the Persian Gulf, water density is the most significant factor controlling the surface concentration of microplastics, while in the Arabian Sea, the interaction of wind speed and sea surface currents is crucial.
期刊介绍:
Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes.
Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following:
– The extent, persistence, and consequences of change and the recovery from such change in natural marine systems
– The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems
– The biogeochemistry of naturally occurring and anthropogenic substances
– Models that describe and predict the above processes
– Monitoring studies, to the extent that their results provide new information on functional processes
– Methodological papers describing improved quantitative techniques for the marine sciences.