Computational insights into the tailoring of photoelectric properties in graphene quantum dot-Ru(II) polypyridyl nanocomposites

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-09-18 DOI:10.1016/j.commatsci.2024.113387
Peng Cui, Qiulan Wu, Xia Hou, Zhiwei Li
{"title":"Computational insights into the tailoring of photoelectric properties in graphene quantum dot-Ru(II) polypyridyl nanocomposites","authors":"Peng Cui,&nbsp;Qiulan Wu,&nbsp;Xia Hou,&nbsp;Zhiwei Li","doi":"10.1016/j.commatsci.2024.113387","DOIUrl":null,"url":null,"abstract":"<div><p>Graphene quantum dot-Ru(II) polypyridyl nanocomposites have emerged as promising materials for photoelectric applications due to their unique optoelectronic properties. This study investigates the impact of pyrenyl, 2,8-di-<em>tert</em>-butylpyreno[4,5-b:9,10-b’]dithiophene, and 2,8-di-<em>tert</em>-butyl-4,10-dihydropyrrolo[3′,2′:9,10]phenanthro[4,5-efg]indole substituents and N^N or C^N analogues of dipyrido[3,2-α:2′,3′-c]phenazine (dppz) on the photophysical characteristics and photoelectric behavior of Ru(II) complexes and their nanocomposites using density functional theory (DFT) calculations. The findings reveal that the incorporation of these substituents and the choice of ligand system significantly influence the chemical reactivity, electron injection, and ground state regeneration processes of the nanocomposites. The C^N nanocomposites demonstrate superior energy conversion efficiencies (14.9–15.6%) compared to the N^N counterparts (1.49–13.4%) due to their higher open-circuit voltages and fill factors. The pyrenyl substituent enhances light absorption and photocurrent generation in the N^N-based nanocomposite but slightly reduces efficiency in the C^N-based nanocomposite. The nanocomposites exhibit improved nonlinear optical characteristics compared to the individual Ru(II) complexes, with the N^N-based nanocomposites showing remarkably higher total hyperpolarizability values. These findings provide valuable insights for designing advanced materials tailored for photoelectric applications by strategically modifying the structural components of GQD-Ru(II) polypyridyl nanocomposites.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"246 ","pages":"Article 113387"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624006086","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Graphene quantum dot-Ru(II) polypyridyl nanocomposites have emerged as promising materials for photoelectric applications due to their unique optoelectronic properties. This study investigates the impact of pyrenyl, 2,8-di-tert-butylpyreno[4,5-b:9,10-b’]dithiophene, and 2,8-di-tert-butyl-4,10-dihydropyrrolo[3′,2′:9,10]phenanthro[4,5-efg]indole substituents and N^N or C^N analogues of dipyrido[3,2-α:2′,3′-c]phenazine (dppz) on the photophysical characteristics and photoelectric behavior of Ru(II) complexes and their nanocomposites using density functional theory (DFT) calculations. The findings reveal that the incorporation of these substituents and the choice of ligand system significantly influence the chemical reactivity, electron injection, and ground state regeneration processes of the nanocomposites. The C^N nanocomposites demonstrate superior energy conversion efficiencies (14.9–15.6%) compared to the N^N counterparts (1.49–13.4%) due to their higher open-circuit voltages and fill factors. The pyrenyl substituent enhances light absorption and photocurrent generation in the N^N-based nanocomposite but slightly reduces efficiency in the C^N-based nanocomposite. The nanocomposites exhibit improved nonlinear optical characteristics compared to the individual Ru(II) complexes, with the N^N-based nanocomposites showing remarkably higher total hyperpolarizability values. These findings provide valuable insights for designing advanced materials tailored for photoelectric applications by strategically modifying the structural components of GQD-Ru(II) polypyridyl nanocomposites.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
石墨烯量子点-Ru(II) 聚吡啶基纳米复合材料光电特性定制的计算见解
石墨烯量子点-Ru(II)多吡啶基纳米复合材料因其独特的光电特性,已成为光电应用领域前景广阔的材料。本研究探讨了芘基、2,8-二叔丁基芘并[4,5-b:9,10-b']二噻吩和 2,8-二叔丁基-4,10-二氢吡咯并[3′,2′:9,10]菲并[4,5-efg]吲哚取代基以及二吡啶并[3,2-α:利用密度泛函理论(DFT)计算了二吡啶并[3,2-α: 2′,3′-c]吩嗪(dppz)取代基和 N^N 或 C^N 类似物对 Ru(II) 复合物及其纳米复合材料的光物理特性和光电行为的影响。研究结果表明,这些取代基的加入和配体体系的选择会显著影响纳米复合材料的化学反应活性、电子注入和基态再生过程。由于开路电压和填充因子较高,C^N 纳米复合材料的能量转换效率(14.9-15.6%)优于 N^N 纳米复合材料(1.49-13.4%)。在基于 N^N 的纳米复合材料中,芘基取代基增强了光吸收和光电流生成,但在基于 C^N 的纳米复合材料中,芘基取代基则略微降低了效率。与单个 Ru(II) 复合物相比,纳米复合材料表现出更好的非线性光学特性,其中 N^N 基纳米复合材料显示出明显更高的总超极化值。这些发现为通过战略性地改变 GQD-Ru(II) 聚吡啶基纳米复合材料的结构成分来设计光电应用的先进材料提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
First-principles study on high-pressure behavior of terahertz spectrum in TATB crystal Exploring the vibrational Raman modes of P–O–P bonds in oligomeric sodium metaphosphates: a comprehensive DFT study Editorial Board Point defect energetics in gallium arsenide, a comprehensive density functional theory study Physically interpretable models for predicting lattice parameters, tunnel geometry, and symmetry in hollandite-type materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1