Maaz Ahmad , Chenyan Hu , Mengyuan Liu , Haobo Zhang , Syed Ata Ur Rahman Shah , Ghulam Nabi , Yujiang Hao , Lianguo Chen
{"title":"Cytotoxicity and mechanisms of perfluorobutane sulfonate (PFBS) in umbilical cord fibroblast cells of Yangtze finless porpoise","authors":"Maaz Ahmad , Chenyan Hu , Mengyuan Liu , Haobo Zhang , Syed Ata Ur Rahman Shah , Ghulam Nabi , Yujiang Hao , Lianguo Chen","doi":"10.1016/j.aquatox.2024.107098","DOIUrl":null,"url":null,"abstract":"<div><p>Yangtze finless porpoises (YFP) accumulate high levels of per- and polyfluoroalkyl substances (PFASs). However, the health impacts of PFASs to YFP are still unknown because it is technically and ethically unfeasible to use the critically endangered YFP in toxicological exposures. To uncover the potential toxicities of PFASs to YFP, this study exposed a YFP umbilical cord fibroblast cell line to perfluorobutane sulfonate (PFBS), an emerging PFASs pollutant in the aquatic environments. After exposure, the cytotoxicity and mechanisms of PFBS were explored. Our preliminary experiments found that PFBS compromised the cell viability in a concentration and duration dependent manner. In an exposure of 48-h duration, the maximum no observed effect concentration (NOEC) of PFBS was determined to be 400 µM. High-throughput proteomics were then conducted to identify the differentially expressed proteins in YFP cells exposed to 400 µM PFBS for 48 h. The results found that PFBS exposure significantly perturbed the proteome fingerprints of YFP umbilical cord fibroblast cells. Functional annotation of differential proteins showed that PFBS had the potential to impair a variety of biological processes associated with the immunity, oxidative stress, metabolism, and proteolysis. Consistently, the intracellular levels of reactive oxygen species (ROS) and proinflammatory cytokine IL-1β were significantly increased by PFBS in YFP umbilical cord fibroblast cells. Overall, this study highlights the toxic effects of emerging PFASs on YFP and provides reference data to evaluate the health risks of aquatic pollution under the context of national YFP protection. To our knowledge, this is the first omics study using YFP umbilical cord fibroblast cells in ecotoxicology of PFASs, which is applicable to various cetacean species and pollutants.</p></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"276 ","pages":"Article 107098"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X24002686","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Yangtze finless porpoises (YFP) accumulate high levels of per- and polyfluoroalkyl substances (PFASs). However, the health impacts of PFASs to YFP are still unknown because it is technically and ethically unfeasible to use the critically endangered YFP in toxicological exposures. To uncover the potential toxicities of PFASs to YFP, this study exposed a YFP umbilical cord fibroblast cell line to perfluorobutane sulfonate (PFBS), an emerging PFASs pollutant in the aquatic environments. After exposure, the cytotoxicity and mechanisms of PFBS were explored. Our preliminary experiments found that PFBS compromised the cell viability in a concentration and duration dependent manner. In an exposure of 48-h duration, the maximum no observed effect concentration (NOEC) of PFBS was determined to be 400 µM. High-throughput proteomics were then conducted to identify the differentially expressed proteins in YFP cells exposed to 400 µM PFBS for 48 h. The results found that PFBS exposure significantly perturbed the proteome fingerprints of YFP umbilical cord fibroblast cells. Functional annotation of differential proteins showed that PFBS had the potential to impair a variety of biological processes associated with the immunity, oxidative stress, metabolism, and proteolysis. Consistently, the intracellular levels of reactive oxygen species (ROS) and proinflammatory cytokine IL-1β were significantly increased by PFBS in YFP umbilical cord fibroblast cells. Overall, this study highlights the toxic effects of emerging PFASs on YFP and provides reference data to evaluate the health risks of aquatic pollution under the context of national YFP protection. To our knowledge, this is the first omics study using YFP umbilical cord fibroblast cells in ecotoxicology of PFASs, which is applicable to various cetacean species and pollutants.
期刊介绍:
Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems.
Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants
The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.