Hongyu Wang, Peng Ye, Ran Song, Guiru Chen, Limei Zhang, Huatai Zhu, Yuting Ren, Jiandu Lei, Jing He
{"title":"Two-step emulsification for the fabrication of homogeneous PCL microspheres encapsulating geniposidic acid with antioxidant properties","authors":"Hongyu Wang, Peng Ye, Ran Song, Guiru Chen, Limei Zhang, Huatai Zhu, Yuting Ren, Jiandu Lei, Jing He","doi":"10.1016/j.partic.2024.08.015","DOIUrl":null,"url":null,"abstract":"<div><p>The mortality rate of neurological disorders is increasing globally, and natural antioxidant geniposidic acid (GPA) holds great potential in the treatment of neuronal oxidative damage. Nevertheless, its inherent instability constrains its pragmatic utilization. Herein, we introduced a drug delivery system capable of protecting unstable natural active compounds from degradation. Among the various methods for preparing drug-loaded microspheres, the emulsification-solvent evaporation technique is one of the most commonly employed due to its efficiency and simplicity. Nevertheless, this method results in microspheres with heterogeneous particle sizes. To address this limitation, we developed a two-step emulsification method involving stirring and homogenization. Using the biocompatible, synthetic, biodegradable polymer polycaprolactone (PCL) as the drug delivery carrier, we prepared GPA-loaded PCL microspheres via the two-step emulsification method. The results demonstrated that the microspheres possessed uniform particle size (polydispersity index = 0.12), excellent drug loading capacity (∼4.86%), sustained drug release profiles (∼68.55% in 264 h), and biocompatibility (cell viability >85%). The <em>in vitro</em> tests showed that the microspheres exerted antioxidant effects by scavenging reactive oxygen species (ROS) induced by oxidative stress, thereby protecting neuronal cells from oxidative damage. This work presents a promising new approach for the treatment of neuronal oxidative damage.</p></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"94 ","pages":"Pages 305-313"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124001706","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The mortality rate of neurological disorders is increasing globally, and natural antioxidant geniposidic acid (GPA) holds great potential in the treatment of neuronal oxidative damage. Nevertheless, its inherent instability constrains its pragmatic utilization. Herein, we introduced a drug delivery system capable of protecting unstable natural active compounds from degradation. Among the various methods for preparing drug-loaded microspheres, the emulsification-solvent evaporation technique is one of the most commonly employed due to its efficiency and simplicity. Nevertheless, this method results in microspheres with heterogeneous particle sizes. To address this limitation, we developed a two-step emulsification method involving stirring and homogenization. Using the biocompatible, synthetic, biodegradable polymer polycaprolactone (PCL) as the drug delivery carrier, we prepared GPA-loaded PCL microspheres via the two-step emulsification method. The results demonstrated that the microspheres possessed uniform particle size (polydispersity index = 0.12), excellent drug loading capacity (∼4.86%), sustained drug release profiles (∼68.55% in 264 h), and biocompatibility (cell viability >85%). The in vitro tests showed that the microspheres exerted antioxidant effects by scavenging reactive oxygen species (ROS) induced by oxidative stress, thereby protecting neuronal cells from oxidative damage. This work presents a promising new approach for the treatment of neuronal oxidative damage.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.