James J Elser , Douglas F Call , Jessica A Deaver , Owen W Duckworth , Brooke K Mayer , Eric McLamore , Bruce Rittmann , Maheen Mahmood , Paul Westerhoff
{"title":"The phosphorus challenge: biotechnology approaches for a sustainable phosphorus system","authors":"James J Elser , Douglas F Call , Jessica A Deaver , Owen W Duckworth , Brooke K Mayer , Eric McLamore , Bruce Rittmann , Maheen Mahmood , Paul Westerhoff","doi":"10.1016/j.copbio.2024.103197","DOIUrl":null,"url":null,"abstract":"<div><p>Phosphorus (P) is essential for growing crops, but the supply of high-quality phosphate rock reserves used for fertilizer production is finite while losses of P from the food/waste system cause considerable environmental damage. A variety of emerging approaches in biotechnology are reviewed that hold promise for improving the sustainability of P use in the food/water systems. These include improved sensors, cell culture approaches to meat production, bio-based P adsorption and transformation strategies, advancements in understanding of polyphosphate-accumulating organisms, and new approaches involving biomineralization and anaerobic treatment. By advancing these technologies to scale, progress can be made in developing a circular phosphorus economy that improves food security while protecting drinking water and aquatic ecosystems.</p></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"90 ","pages":"Article 103197"},"PeriodicalIF":7.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0958166924001332/pdfft?md5=1e30f2e61cbd06c2d4ed6d3031498504&pid=1-s2.0-S0958166924001332-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958166924001332","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphorus (P) is essential for growing crops, but the supply of high-quality phosphate rock reserves used for fertilizer production is finite while losses of P from the food/waste system cause considerable environmental damage. A variety of emerging approaches in biotechnology are reviewed that hold promise for improving the sustainability of P use in the food/water systems. These include improved sensors, cell culture approaches to meat production, bio-based P adsorption and transformation strategies, advancements in understanding of polyphosphate-accumulating organisms, and new approaches involving biomineralization and anaerobic treatment. By advancing these technologies to scale, progress can be made in developing a circular phosphorus economy that improves food security while protecting drinking water and aquatic ecosystems.
期刊介绍:
Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time.
As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows.
COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.